TETRAHEDRON REPORT NUMBER 255

NUCLEOPHILIC ADDITION TO OLEFINS. KINETICS AND MECHANISM

Claude F. Bernasconi Department of Chemistry University of California Santa Cruz, California 95064

(Received in USA 3 March 1989)

Contents

1. Introduction

This report deals with reactions of the general type described by eq 1.

X and Y are electron withdrawing substituents that **stabilize the** negative charge in the adduct; a and b are usually aryl, alkyl and/or hydrogen but other possibilities exist. When X is a powerful electron withdrawing group (e.g., $NO₂$), Y does not need to also be electron withdrawing for the adduct to be stable. Among the most commonly studied nucleophiles one finds OH-, H₂O and amines; a more limited number of investigations have been reported with thiolate ions, ArO⁻, RO⁻, CN⁻, PPh₃, and carbanions.

This report is not meant to be a comprehensive review of the field of nucleophilic addition to olefins. Rather it focuses on kinetic and mechanistic aspects and on structure-reactivity relationships in solution, with an emphasis on results that are significant not only within the narrow scope of the reactions under study but in a broader context of organic reactivity. Thus some studies that are considered of particular importance have been treated in considerable detail while others may have been omitted altogether in order to keep this report within an acceptable length.

The bulk of this report covers the literature of the past 14 years but some earlier publications have also been cited where deemed important. Much of the earlier quantitative work has been reviewed by Rappoport and Ladkani,¹ while more general mechanistic aspects of these reactions have been summarized by Patai and Rappoport.² A significant fraction of the more recent studies has provided important insights not only into the structure-reactivity relationships of nucleophilic additions to activated C=C double bonds as such, but of reactions involving carbanions in general. For example, eq 1 can be regarded as a model for the first step of a nucleophilic vinylic substitution that proceeds by the addition-elimination mechanism,²⁻⁶ eq 2 (LG = nucleofuge). Note that different stereochemical outcomes are possible for eq 2 but only one (retention) is shown.

The factors that determine k_1 and k_{-1} in eq 2 must be similar to those that determine k_1 and k_{-1} in eq 1. Inferences drawn about k_{-1} are of particular interest since this rate constant is usually inaccessible to direct measurement in eq 2, but often measurable in eq 1. Since there is little fundamental distinction between NuV and

4020 C. F. BERNASCONI

LG⁻ and hence between k_{-1} and k_2 in eq 2, k_{-1} in eq 1 should model k_2 provided that Nu^v and LG⁻ are the same or **similar.** A better understanding of the interplay between various factors that determine the thermodynamic stability $(K_1 = k_1/k_1)$ of the intermediate 3, its rate of formation (k_1) and its kinetic stability towards collapse into products $(k₂)$, has recently led to the design of a system in which 3 could be directly observed for the first time, and k_1 , k_1 and k_2 of eq 2 could all be measured (see Sect. 4.2.).

The k_{-1} -step in eq 1 may also be considered a model for the second step in an ElcB elimination⁷⁻⁹ reaction shown in eq 3 in the reverse direction. Hence k_{-1} in eq 1 should provide information about leaving group reactivities in ElcB reactions (see Sect. 6.2).

$$
LG^{-} + \sum_{b}^{a} C = C \sum_{Y}^{X} + \sum_{L1}^{k_{1}} b - \sum_{LG}^{X} C \sum_{Y}^{X} + \sum_{B}^{BH} b - \sum_{L1}^{A} C - \sum_{L2}^{H} - X \qquad (3)
$$

Within a broader context eq 1 may be seen as one of the major elementary processes that lead to $carbanions$. This implies that by studying eq 1 much can be learned about what structural and environmental (solvent) features facilitate the formation of carbanions in general. There are indeed striking parallels between the structure-reactivity behavior of nucleophilic additions to olefins, proton transfers at carbon (eq 4), and still other carbanion-forming processes, as will be discussed in this review. These parallels become particularly apparent

$$
CH2XY + Bv \xrightarrow{\times} HC(\begin{matrix} X \\ - \\ Y \end{matrix}) + BHv+1
$$
 (4)

when *intrinsic* barriers or *intrinsic* rate constants are compared with each other. For a reaction with forward and reverse rate constants k_1 and k_{-1} , the intrinsic barrier is generally defined as $\Delta G_0^{\dagger} = \Delta G_1^{\dagger} = \Delta G_{-1}^{\dagger}$ for $\Delta G^0 = 0$, the intrinsic rate constant as $k_0 = k_1 = k_{-1}$ for $K_1 = 1.10$ In other words, if chemical reactivity is viewed as comprising a kinetic and a thermodynamic component, ΔG_0^{\dagger} or k_0 can be identified with the kinetic component. Hence the determination of intrinsic barriers or intrinsic rates allows us to make comparisons between systems that are independent of the thermodynamics of particular reactions. Such comparisons will be discussed extensively in Section 6, and the factors that affect structure-reactivity relationships and intrinsic rate constants will be evaluated. Some readers may find it advantageous to read Section 6 first, i.e., before dealing with the detailed description of individual reactions presented in Sections 2-5.

2. **Addition of Water and Hydroxide Ion. Hydrolytic Cleavage of the C=C Double Bond**

2.1. General Mechanistic Considerations

The addition of water or hydroxide ion to an activated olefin generates the anionic adduct T_{OH}^- (shown for 1 with $a = Ax$, $b = H$) as shown in eqs 5 and 6.¹² Whether the reaction with water proceeds via a zwitterionic

$$
A rCH = CXY + H2O \xleftarrow{\mathbf{k}_1 H2O \atop \mathbf{k}_1 H}
$$

$$
T_{OH} \rightarrow H+
$$
 (5)
ArCH = CXY + OH
$$
\xleftarrow{\mathbf{k}_1 H2O \atop \mathbf{k}_1 H2O}
$$

$$
T_{OH} \rightarrow (6)
$$

intermediate, $5 = T_{OH}^{\dagger}$, or by concerted base catalysis, with a second water molecule acting as the base, 6, has not been definitely established. With benzylidenemalononitrile, PhCH=C(CN)₂, the water point falls close to the Brønsted line for general base catalyzed water addition, 7, suggesting that 6 is a likely transition state for eq 5^{13}

The reaction of olefins with water or hydroxide ion does not stop with the formation of T_{OH} but leads, in a sequence of several steps, to cleavage into the corresponding aldehyde and CH₂XY or CHXY⁻. This is shown in Scheme L Steps 2 and 3 are proton transfers at carbon and oxygen, respectively, while step 4 represents C-C bond cleavage to form products. The step labeled k_{34} involves concerted C-C bond cleavage with deprotonation of the OH-group, as discussed in Section 2.2.

$$
A rCH = CXY
$$
\n
$$
A rCH = CXY
$$
\n
$$
k_1^H a_{H^+} + k_1^H 2^O + k_1^{BH} [BH]
$$
\n
$$
A rCH - CXY
$$
\n
$$
k_2^H 2^O + k_2^H a_{H^+} + k_2^{BH} [BH]
$$
\n
$$
k_2^O H a_{OH^-} + k_2^H 2^O + k_2^B [BH]
$$
\n
$$
A rCH - CHXY
$$
\n
$$
k_2^O H a_{OH^-} + k_2^H 2^O + k_2^B [BH]
$$
\n
$$
OH
$$

$$
T_{\rm OH}^- \hspace{2cm} T_{\rm OH} \hspace{2cm}
$$

Scheme I

Even though Scheme I applies to all systems that were investigated in detail and hence appears to be very general, there are marked differences among the various substrates regarding rate limiting steps and concerning the detectability of the intermediates T_{OH}^- , T_{OH}^0 and T_{O}^- .

 T_{OH} , the intermediate of greatest interest, is directly observable when both of the following two conditions are met. (1) The equilibrium constant for eq 5 ($K_1^{H2O} = k_1^{H2O}/k_A^{H2O}$) or eq 6 ($K_1^{OH} = k_1^{OH}/k_A^{H2O}$)

must be large enough that $K_1^{\text{max}}/a_H + K_1^{\text{old}}a_{H}$ > 1 within an experimentally accessible pH-range. (2) The rate of formation of $T_{\text{OH}}^-(k_1^{\text{H2O}} + k_1^{\text{OH}}a_{\text{OH}}^+ + k_1^{\text{B}}[B])$ must be larger than the rate by which T_{OH}^+ proceeds to T_{OH}^0 or to final products. The first condition is met by the following representative list of compounds: benzylidenemalononitrile (8, pK₁^{H₂O} = 10.7 in water,¹³ pK₁^{H₂O} = 9.5 in 50% Me₂SO-50% water¹⁴), benzylidene-1,3-indandione $(9, pK_1^2) = 7.79$ in 50% Me₂SO-50% water), ¹⁵

 11 13

1,1-dinitro-2,2-diphenylethylene (10, pK $_1^{H2O}$ = 6.09 in 50% Me₂SO-50% water),¹⁶ β -nitrostyrene (11, pK $_1^{H2O}$ = 10.37 in 50% Me₂SO-50% water), ¹⁷ benzylidene Meldrum's acid (12, pK₁^{H2O} = 5.43 in water), ¹⁸ and benzylidenemalonaldehyde (13, pK₁H₂O = 4.79 in water).¹⁹ Since the pK₁H₂O values are generally of the same order of magnitude as the pK, values of the corresponding CH₂XY carbon acids (Table I), one can usually predict whether the first condition will be met based on one's knowledge of the pK_a CH2XY value. Thus, substrates with only one electron withdrawing group (X) will in general not yield an observable T_{OH} except when X = NO₂.

The second condition is not met for 8 in water at any pH ,¹³ and thus T_{OH} ⁻ is not observable in this solvent. However, in 50% and 70% aqueous Me₂SO the rate of formation of T_{OH}^- at high pH is enhanced while conversion of T_{OH} to products is slowed down, resulting in direct detectability of T_{OH} ⁻¹⁴ For the other five olefins, 9-13, the second condition is met but in most cases a higher pH is required to meet it than that needed to meet the first condition. A dramatic example illustrating this point is 10: If T_{OH} were kinetically stable, 50% conversion of the substrate into T_{OH} should occur at pH = pK, H2O = 6.09. However from k₁H₂O = 1.05 × 10⁻⁴ s^{-1} , k₁OH = 12.2 M⁻¹ s⁻¹, k₂H₂O = 2.80 × 10⁻³ s⁻¹ and k₂H = 4.82 × 10³ M⁻¹ s⁻¹¹⁶ we see that at pH 6.09 the rate of formation, $k_1^{H2O} + k_1^{OH}$ a_{OH} = $k_1^{H2O} = 1.05 \times 10^{-4}$ s⁻¹, is much slower than the rate of conversion of T_{OH} to T_{OH} , ²⁰ k₂H₂U + k₂H_{aH}+ = 2.80 × 10⁻³ + 3.92 × 10⁻³ = 6.72 × 10⁻³ s⁻¹. It is only at pH 12.3 that k₁^{OH}a_{OH}- and k_2 ^{H₂O} become equal and at pH > 12.7 that T_{OH} could be clearly observed.¹⁶

In the following sections we describe the salient features of the six systems 8-13 in some detail.

X,	Solvent	$PhCH=CXY$ $\, {\rm pK}_1^{\rm H_2O}$	CH ₂ XY $\mathbf{pK_{a}}$	
$\overline{\mathbf{C}}\mathbf{N}$ $\overline{\text{CN}}$	H_2O	10.7 ^a	11.39a	
CN CN	50% Me ₂ SO	9.5 ^b	10.21 ^b	
$\mathbf H$ NO ₂	50% Me ₂ SO	10.37 ^c	11.32^d	
യ œ	50% Me ₂ SO	7.79e	6.35 f	
$NO_2^{\ \ \, g}$ NO ₂	50% Me ₂ SO	6.09 ^h	5.00 ^h	
COO _{CH₃} \cos CH_3	H ₂ O	5.43i	4.841	
CHO CHO	H ₂ O	4.79k	I	

Table I. pK_1 ^{H2O} Values for Water Addition to Olefins and pK_a Values of Carbon acids.

^aRef. 13. ^bRef. 14. ^cRef. 17. ^dRef. 25. ^cRef. 15. ^fRef. 134. $8Ph_2C=C(NO)_2$ and $CH_3CH(NO)_2$. ^hRef. 16. iRef. 18. JRef. 32. kRef. 19. ¹Unknown, CH₂(CH=O)₂ is present as enol: R. Hüttel, Chem. Ber. 74, 1825 (1941); A. A. Bothner-By and R. K. Harris, J. Org. Chem. 30, 254 (1965).

2.2. Benzylidenemalononitrile

The hydrolysis of benzylidenemalommitrile (BMN, 8) and of several phenyl substituted BMN's was fit studied by Patai and Rappoport²¹ who established many but not all mechanistic details. More recent work answered several unresolved questions.^{13,14,22,22a} Fig. 1 shows a pH-rate profile in water.¹³ As pointed out in the previous section, no intermediate accumulates to detectable levels in this solvent so that the rate of disappearance of BMN is the same as the rate of formation of benzaldehyde and $CH_2(CN)_2$ or $CH(CN)_2$ - over the entire pH-range. The pH-rate profile for BMN is representative for the rate of disappearance of most olefiis in aqueous solution; it consists of four phases, each representing a different rate limiting step.

Figure 1. pH-rate profile of the hydrolysis of benzylidenemalononitrile in water at 25°C. Adapted from ref. 13.

Phase I: Rate limiting OH⁻-attack, with

$$
k_{\text{obsd}} = k_1^{\text{OH}} a_{\text{OH}} \tag{7}
$$

Phase I. Rate limiting **waler** attack, with

$$
k_{\text{obsd}} = k_1^{\text{H2O}} \tag{8}
$$

Phase III: Rate limiting breakdown of T_{OH}⁻, with

$$
k_{\text{obsd}} = \frac{K_1^{\text{H}_2O}}{K_a^{\text{CH}}} \frac{K_a^{\text{OH}}}{a_{\text{H}f}} k_4
$$
 (9)

where $K_a^{CH} = k_2^{H2O}/k_2^H$ is the C-H acidity constant, $K_a^{OH} = k_3^{H2O}/k_3^H$ the O-H acidity constant of T_{OH}^o . *Phase IV*: Rate limiting breakdown of T_{OH}° into products, with

$$
\mathbf{k}_{\text{obsd}} = \frac{\mathbf{K}_{1}^{\text{H}_2\text{O}}}{\mathbf{K}_{\text{a}}^{\text{CH}}} \, \mathbf{k}_{34}^{\text{H}_2\text{O}} \tag{10}
$$

14 and 15 have been suggested as possible transition states for the $k_{\mathcal{U}}^{\text{H2O}}$ -step

In Me₂SO-water mixtures at high pH the rate of formation of T_{OH} increases (k₁^{OH} = 1.26 × 10² M⁻¹ s⁻¹ in H₂O, 1.00×10^3 M⁻¹ s⁻¹ in 50% Me₂SO, 6.75×10^3 M⁻¹ s⁻¹ in 70% Me₂SO)¹⁴ while the conversion of T_{OH} to products slows down so that T_{OH} ⁻ becomes detectable. This allowed direct measurement of the rate by which T_{OH} is transformed to benzaldehyde and CH(CN)₂ in alkaline solution. The various pathways of this conversion are shown in Scheme II.

Scheme **II**

It was established that, except at very high pH for $4-NO_2-BMN$ (see below), k_4 is fast compared to all pathways leading from T_0^- back to T_{OH}^- , indicating that conversion of T_{OH}^- to T_0^- must be rate limiting. It could further be shown that in the absence of a general acid (BH) and at high pH the conversion of T_{OH} to T_{OH} ^o makes a negligible contribution, and that the $T_{OH} \rightarrow T_0^2$ equilibrium is rapidly established compared to the T_0^2 $\rightarrow T_0^-$ step. Hence the rate of conversion of T_{OH}^- to products is given by

$$
k_{\text{obsd}} = K_5^{\text{OH}} k_6^{\text{H2O}} a_{\text{OH}^+} + k_i \tag{11}
$$

with $K_5^{\text{OH}} = k_5^{\text{OH}}/k_5^{\text{H2O}}$.

In the presence of piperidinium ion (BH) the pathway $T_{OH}^- \to T_{OH}^0 \to T_0^-$ becomes more important than the pathway $T_{OH}^- \rightarrow T_O^{-2^-} \rightarrow T_O^-$, and hence k_{obsd} is given by

$$
k_{\text{obsd}} \approx k_2^{\text{BH}}[BH] + k_1 \tag{12}
$$

The addition of Me₂SO to the solvent also induces changes in rate limiting steps in acidic solution (Scheme I). In the absence of buffer, or at very low buffer concentrations, oxygen deprotonation of T_{OH}^{O} is no longer a rapid equilibrium step (eq 9) but becomes rate limiting, with $k_{\rm obsd}$ given by

$$
k_{\text{obsd}} = \frac{K_1^{\text{H}_2\text{O}}}{K_s^{\text{CH}}} (k_3^{\text{H}_2\text{O}} + k_3^{\text{OH}} a_{\text{OH}} + k_3^{\text{B}}[B])
$$
(13)

From the above discussion it is apparent that, depending on the solvent, pH, buffer concentration and phenyl substituent any of the steps $k_1, k_2, k_3, k_{34}, k_4, k_5$ or k_6 in Schemes I and II can be rate limiting in the formation of ArCH=O and CH₂(CN)₂ (or CH(CN)₂²). This is quite remarkable and is the reason why so many of the rate and equilibrium constants in these schemes could be determined. A selection of these constants is summarized in Table II.

Substituent effects on k_1^{OH} and k_1^{H2O} have been extensively studied, first by Patai and Rappoport,²¹ by Pritchard et al.²³ and, more recently, in our laboratory as a function of the solvent.¹⁴ There are two points of particular interest to be noted. The first is that π -donor substituents such as 4-OH, 4-OMe and 4-NMe, show strong negative deviations from Hammett plots based on standard o-values. With 4-OH there is a negative deviation even from a plot based on σ^{+23} while with 4-OMe and 4-NMe₂ there are slight positive deviations¹⁴ from the σ^+ -plots. These results indicate the presence of substantial resonance stabilization of the olefin as shown in 16b.

16a 16b

The second point of interest relates to the magnitude of p derived from the Hammett plots. For example in 50% Me₂SO $\rho = 1.63$ for k₁^{OH14}; from an estimated $\rho \approx 2.43$ for the equilibrium constant K₁^{OH} an approximate normalized p-value, $\rho^{n}(k_1^{OH}) = \rho(k_1^{OH})/\rho(K_1^{OH}) = 0.67$, was calculated.¹⁴ The normalized p-value is appreciably larger than the estimated β_{nuc} -value for this reaction and suggests an imbalanced transition state in which the development of resonance in the carbanionic adduct (T_{OH}^T) lags behind bond formation at the transition state, a point we shall return to in Section 6.

2.3. *Benzylidene-1,3-indandione*

The hydrolysis of benzylidene-1,3-indandione (BID, 9) was studied in 50% Me₂SO-50% water.¹⁵ The kinetic behavior can again be understood by Scheme I. The pseudo-first-order rate constant for the disappearance of BID is shown in Fig. 2 (circles). The pH-rate profile for this process shows the same four phases as in Fig. 1; they have the same mechanistic meaning as in the hydrolysis of BMN.

 a From Ref. 14. ${}^{b}K_{a}{}^{CH}(T_{OH}O) = k_{-2}{}^{H_{2}O}/k_{2}{}^{H}$. ${}^{c}K_{a}{}^{OH}(T_{OH}O) = k_{3}{}^{H_{2}O}/k_{-3}{}^{H}$.

Figure 2. pH-rate profile of the hydrolysis of benzylidene-1,3-indandione in 50% Me₂SO-50% water at 20°C. o: rate of disappearance of the olefin; \bullet : rate of disappearance of the substrate calculated from measurements in the reverse direction, i.e., the condensation of benzaldehyde with 1,3-indandione. \Box : reaction of T_{OH}^- with water to form T_{OH}^0 . Δ : reaction of T_{OH}^- with H⁺. A: Conversion of T_{OH}^0 to olefin. From ref. 15.

At $pH > 8$, T_{OH} accumulates to detectable levels and its conversion to benzaldehyde and 1,3-indandione anion can be followed separately. At low buffer concentrations carbon protonation of T_{OH} is rate limiting (k_{obsd} $= k_2^{H2O} + k_2^{BH}[BH]$; squares in Fig. 2 show k_2^{H2O} in the absence of buffer) while at high buffer concentrations k_4 becomes rate limiting $(k_{obsd} = k_4 K_a^{OH}/K_a^{CH})$.

pH-jump experiments whereby T_{OH} that had been generated in strong base and subsequently mixed with acidic buffers yielded values for k_{ul}H, k₁, BH, k₂^H, k₂^{BH}, k₂^{Hz} and k₂^B as follows. At pH > pK_a^{CH}, a single reaction was observed that corresponds to the conversion of T_{OH} to BID according to

$$
BD \t A_{1}^{H} a_{H^{+}} + k_{1}^{BH} [BH] \t T_{OH} \t (14)
$$

with

$$
k_{\text{obsd}} = k_{1}^{H}a_{H}^{H} + k_{1}^{BH}[BH] \approx k_{1}^{H}a_{H}^{H} \quad ([BH] < 0.1 \text{ M}) \tag{15}
$$

The data are shown as open triangles at $pH > 5.5$ in Fig. 2.

At pH < pK_a^{CH}, two reactions are observed. The first is a partitioning of T_{OH}⁻ into BID and T_{OH}^O, eq 16,

$$
BD \xleftarrow{\ k_1^H a_{H^*}} T_{OH}^{-} \xrightarrow{\ k_2^H a_{H^+} + k_2^H [BH]} T_{OH}^{-} \qquad (16)
$$

with k_{obsd} given by

$$
k_{obsd} \text{ (process I)} = (k_{1}^{\ H} + k_{2}^{\ H})a_{H} + k_{2}^{\ BH}[\text{BH}]
$$
 (17)

This is shown for $[BH] = 0$ as open triangles at $pH < 4.3$ in Fig. 2. The second reaction is the slow conversion of T_{OH}° to BID via T_{OH}^- as steady state intermediate (see Scheme I), with k_{obsd} given by

$$
k_{\text{obsd}} \text{ (process II)} = \frac{(k_{2}^{H_{2}O} + k_{2}^{B}[B])k_{1}^{H}a_{H}^{*}}{(k_{1}^{H} + k_{2}^{H})a_{H}^{*} + k_{2}^{BH}[BH]}
$$
(18)

which simplifies to eq 19 at zero buffer concentration

$$
k_{\text{obsd}} \text{ (process II)} = \frac{k_{-2}^{\ H_2O}k_{-1}^{\ H_1}}{k_{-1}^{\ H_1} + k_{2}^{\ H_2}} \tag{19}
$$

The data at zero buffer concentration are shown as filled triangles in Fig. 2.

The various rate constants determined for the BID system are summarized in Table III.

2.4. *l,I-Dinitro-2&diphenylethylene*

The hydrolysis of l,l-dinitro-2,2diphenylethylene (DNDPE, 10) was investigated in 50% Me,SO-50% water at 20°C.¹⁶ Rates, starting with the substrate, were measured between pH 7.3 and 15.5. T_{OH}^{-} is a steady state intermediate up to pH ~12.3 with k_1^{H2O} being rate limiting between pH 7.3 and 10, and k_1^{OH} being rate limiting at pH > 10 (Scheme I). At pH > 12.7 T_{OH}^- accumulates to detectable levels and its conversion to benzophenone and 1,1-dinitroethane anion was measured separately. It showed rate limiting carbon protonation of T_{OH} ⁻ (k₂^{HzO} + k₂^{BH}[BH]). At pH > 14 the pathway through the dianionic adduct, T_0^2 (scheme analogous to Scheme II) becomes dominant, as had been observed for benzylidenemalononitrile in the same solvent. In contrast to the latter system, however, no evidence for the intramolecular proton switch $(k_i$ in Scheme II) could be found.

T_{OH}, generated at high pH, was subjected to similar pH-jump experiments as in the study of BID. Two kinetic processes were observed. The first can be attributed to the partitioning of T_{OH}^- into 10 and T_{OH}^- , which

 2 From Ref. 15. b pK_w = 15.90.

is analogous to eq 16 in the BID system, except that here $k_2^H >> k_1^H$, making T_{OH}^O the main product of this reaction. The second process represents the conversion of T_{OH}^0 to benzophenone and dinitromethane, with rate limiting oxygen deprotonation (k₃) followed by fast breakdown of T_0 ⁻ into products (k₄). This contrasts with the BID system where the second process seen in the pH-jump experiments corresponds to the conversion of T_{OH}^0 ^O back to the olefin. The main reason for this interesting contrast is the very high k_4 -value in the DNDPE system $(k_4 > 2 \times 10^9 \text{ s}^{-1}$ for DNDPE, $\approx 3.2 \times 10^6 \text{ s}^{-1}$ for BID) which can, to a large extent, be attributed to the low pK_a of 1,1-dinitromethane and the steric acceleration by the two phenyl groups, making the dinitromethane anion a

much better leaving group than is typical for a nitronate ion of the same pK_a . A contributing factor is that k_2 ^{H2O} = 0.49 s⁻¹ for BID is substantially larger than k_0 ^{H₂O} = 1.42 × 10⁻² s⁻¹ for DNDPE, despite similar pK_a^{CH} values (5.53 for DNDPE, 5.87 for BID). This rate difference is a consequence of the higher intrinsic barrier for proton transfers involving nitroalkanes compared to diketones as will be elaborated upon in Section 6.

A summary of rate constants of the various elementary steps is given in Table IV.

Table IV. Rate and Equilibrium Constants of the Steps in Scheme I for 1,1-Dinitro-2,2-diphenylethylene in 50% Me₂SO-50% Water at 20°C.^a

constant	value	
	Step 1	
$K_1^{H_2O}$ (p $K_1^{H_2O}$), M	8.1×10^{-7} (6.09)	
$K_1^{OH} = K_1^{H2O}/K_w^b M^{-1}$	6.4×10^{9}	
$k_1^{H_2O}$, s ⁻¹	1.05×10^{-4}	
k_{-1}^H , M ⁻¹ s ⁻¹	1.3×10^{2}	
k_1^{OH} , M ⁻¹ s ⁻¹	12.2	
$k_{-1}^{\text{H}_2\text{O}}, s^{-1}$	1.9×10^{-9}	
	Step 2	
K_a^{CH} (p K_a^{CH}), M	2.95×10^{-6} (5.53)	
$k_2^{H_2O}$, s ⁻¹	2.80×10^{-3}	
k_{-2}^{OH} , M ⁻¹ s ⁻¹	6.55×10^{7}	
k_2^H , M ⁻¹ s ⁻¹	4.82×10^{3}	
$k_{-2}^{\text{H}_2\text{O}}, s^{-1}$	1.42×10^{-2}	
	Step 3	
K_a^{OH} (p K_a^{OH})	5.12×10^{-14} (13.3)	
k_3 ^{OH} , M ⁻¹ s ⁻¹	1.30×10^{9}	
$k_{-3}^{\text{H}_2\text{O}}, s^{-1}$	3.2×10^{6}	
	Step 4	
k_4 , s ⁻¹	$>2\times10^9$	

^aFrom Ref. 16. $b_{pK_w} = 15.90$.

25. fLNitrostyrene

A detailed kinetic analysis of the hydrolysis of β -nitrostyrene (β -NS, 11) as well as the 4-chloro- and 3nitro derivatives has recently been carried out in 50% Me₂SO-50% water,¹⁷ yielding rate and equilibrium constants for each step in Scheme I. A similar study of 3,4-methylenedioxo-ß-nitrostyrene in water had been published earlier.24

A unique feature of the β -nitrostyrenes is that T_{OH} is not the only intermediate that can be generated in high concentrations: T_{OH}° can be synthesized independently and the kinetics of its reactions could be measured separately. For example, when T_{OH}° is placed into an HCl solution, conversion into the corresponding β -NS takes place via T_{OH}^- as a steady state intermediate, with k_{obsd} given by eq 19. On the other hand, when T_{OH}^0 is subjected to basic conditions, it is mainly transformed into ArCH=O and CH₂=NO₂⁻ via T₀⁻.

Another interesting feature of the β -NS's is that upon mixing of T_{OH} ⁻ with a strongly acidic solution there is not only partitioning of T_{OH} into T_{OH} ^o and the olefin as with BID (eq 16) but rapid oxygen protonation leads to the nitronic acid in a preequilibrium before partitioning as shown in Scheme III. From the pH-dependence of k_{obsd} , the acid dissociation constant of the nitronic

Scheme III

acid, K_aNOH, could be determined. For the unsubstituted β -NS, $pK_A^{NOH} = 4.65$ in 50% Me₂SO which compares with $pK_a^{NOH} = 4.75$ for phenylnitromethane in the same solvent.²⁵

A summary of rate and equilibrium constants is presented in Table V. It is noteworthy that the Brensted α -values for the deprotonation of T_{OH}^O at the carbon (derived from k_2^{H2O} and k_2^{OH}) are larger than unity (1.39 for H₂O, 1.37 for OH⁻), just as had been observed by Bordwell et al. for the deprotonation of phenylnitroalkanes.²⁶

2.6. *Bemylidene Meldrum's Acid*

Benxylidene Meldrum's acid (12, BMA) is one of the most electrophilic olefins. For example, in water conversion to T_{OH} is 50% complete at pH 5.4, implying pK₁H₂O = 5.4.¹⁸ Its reactivity is further enhanced by

electron withdrawing substituents (e.g., $pK_1^{H2O} = 3.48$ for 4-nitrophenyl BMA²⁷), or by other structural modifications.^{28,29}

	H^a	4 -Cl a	$3-NO2a$	$3,4$ -OCH ₂ O ^b
		Step 1		
$K_1^{H_2O}$ (p $K_1^{H_2O}$), M	4.27×10^{-11} (10.37)	1.02×10^{-10} (9.99)	6.76×10^{-10} (9.17)	5.0×10^{-9} (8.3)
$K_1^{OH} = K_1^{H_2O} / K_w, M^{-1}$	3.39×10^5	8.13×10^5	5.37×10^{6}	5.0×10^5
$k_1^{H_2O}$, s ⁻¹	2.20×10^{-6}	2.40×10^{-6}	3.30×10^{-6}	8.18×10^{-6}
k_{-1} ^H , M ⁻¹ s ⁻¹	5.12×10^{4}	2.34×10^{4}	4.84×10^{3}	1.63×10^{3}
k_1 ^{OH} , M ⁻¹ s ⁻¹	1.31	2.11	5.48	0.30
$k_{-1}^{\text{H}_2\text{O}}$, s ⁻¹	3.89×10^{-6}	2.57×10^{-6}	1.00×10^{-6}	6×10^{-7}
		Step 2		
$K_a^{CH}(pK_a^{CH}), M$ $k_2^{H_2O}, s^{-1}$	10.49	10.35	10.13	8.77
	1.40×10^{-3}	1.55×10^{-3}	1.90×10^{-3}	1.76×10^{-3}
k_{-2}^{OH} , M^{-1} s ⁻¹	3.62×10^{2}	5.50×10^{2}	1.13×10^{3}	2.90×10^{2}
k_2 ^H , M ⁻¹ s ⁻¹	3.43×10^{3}	3.22×10^{3}	4.61×10^{3}	1.8×10^{2}
$k_2^{H_2O}$, s ⁻¹	1.11×10^{-7}	1.43×10^{-7}	3.42×10^{-7}	3.06×10^{-7}
		Step 3		
K_a^{OH} (p K_a^{OH})	14.80	14.56	14.39	$=14.0^{c}$
		Step 4		
K_4 , M	-1.15×10^{1}	6.17	1.66	$\approx 1 \times 10^{4c}$
k_4 , s ⁻¹	1.59×10^{2}	1.17×10^{2}	6.24×10^{1}	$\approx 2.04 \times 10^{3c}$
k_{-4} , M ⁻¹ s ⁻¹	-1.4×10^{1}	1.89×10^{1}	3.73×10^{1}	-0.2
		Nitronic Acid		
$\, {\rm pK}_2^{\rm\, NOH}$	4.65	4.44	4.45	

Table V. Rate **and Equilibrium Constants of the Steps in Scheme I for Phenyl Substituted p-Nitrostyrenes in** 50% Me₂SO-50% Water at 20°C, and in Water at 25°C.

^aIn 50% Me₂SO-50% water at 20°C, ref. 17. ^bIn water at 25°C, ref. 24. ^cThe estimate of pK_a ^{OH} seems too high, leading to K_4 and k_4 values that are correspondingly too high, as discussed in ref. 17.

An early kinetic study of the hydrolysis of several substituted BMA's³⁰ in water left a number of mechanistic questions unanswered. Later work on the reaction of BMA as well as the 4-methoxy and 4-nitro derivatives established that in many respects the kinetic behavior is very similar to that of benzylidene-1,3 indandione. In particular, the high stability of T_{OH}^- , which is already detectable at pH ~5, allowed similar pHjump experiments to be performed with similar results (reactions analogous to eqs 14 and 15).

At very low pH, the hydrolysis of BMA shows similarities with the hydrolysis of benzylidenemalononitrile in 50% Me₂SO in that oxygen deprotonation of T_{OH}^O is rate limiting. With 4-NO₂-BMA, but not with BMA or 4-MeO-BMA, there is a change to rate limiting breakdown of $T_0^-(k_4)$, Scheme I) at high buffer concentrations.³¹ This difference reflects a higher k_4 -value for the two latter compounds due to a stronger "push" by the more basic oxyanion in T_0^- . In fact these k_4 -values are in the order of 10^{10} s⁻¹ which is remarkably high for a carbanion leaving group and is attributed to the low pK_a of Meldrum's acid (pK_a = 4.84)³² and the release of steric congestion in T_0 .

A consequence of these high rates is that T_0 ⁻ tends to collapse into the benzaldehyde and Meldrum's acid anion before BH, the by-product of the k_3^B -step in Scheme I, has diffused away from T_0^- . This situation is illustrated in Scheme IV which shows the diffusional steps that are part of the Eigen³³ mechanism of the proton

Scheme IV

transfer T_{OH}^0 + B⁻ \rightarrow T_O⁻ + BH. The scheme also shows the two different pathways to products (k₄ and k₄'). As long as diffusional separation is fast compared to collapse of T_0^- + HB, i.e., $k_b \gg k_4$ ', the reaction proceeds through the k₄-step. Since in the reverse direction this mechanism involves diffusion controlled trapping of T_0 by BH, this is also known as the "trapping mechanism."³⁴ It is the path followed in the reaction of $4-\text{NO}_2$ -BMA and all the other olefinic substrates discussed so far.

When the collapse of T_0^- * HB becomes faster than diffusional separation, i.e., $k_4' >> k_b$, the reaction is forced to proceed through the k_4 ' pathway. Since in the reverse direction this pathway requires a preassociation of the aldehyde, the carbanion and the buffer acid, this is called the "enforced preassociation mechanism."³⁴ Two lines of evidence indicate that the hydrolysis of BMA and p-MeO-BMA follow this enforced preassociation mechanism. (1) The Brønsted β -values for general base catalysis (k₃B) are 0.83 and 0.81, respectively,³¹ instead of the expected value of 1.0 for a trapping mechanism.^{33,34} The low β -values are the result of hydrogen bonding stabilization of the transition state of the k_4 '-step. (2) There is a substantial secondary kinetic deuterium isotope effect in the reaction of BMA and 4-MeO-BMA (D on the benzylic carbon), consistent with rate limiting k_4 ', but no isotope effect in the reaction of $4-NO_2-BMA$, consistent with rate-limiting k_b .

Table VI summarizes representative rate and equilibrium constants for the hydrolysis of BMA, 4-OMe-BMA and $4-NO₂$ -BMA.

	4-MeO	Н	$4-NO2$	
		Step 1		
$K_1^{\ H2O}(pK_1^{\ H2O}), M$	3.33×10^{-7} (6.48)		3.75×10^{-6} (5.43) 3.43×10^{-4} (3.46)	
$K_1^{OH} = K_1^{H2O}/K_w, M^{-1}$	1.78×10^{7}	2.00×10^{8}	1.83×10^{10}	
k_1^{H2O}, s^{-1}	0.118	0.55	1.75	
k_{-1}^H , M ⁻¹ s ⁻¹	3.54×10^{5}	1.47×10^{5}	5.10×10^{3}	
k_1^{OH} , M ⁻¹ s ⁻¹	2.51×10^{2}	7.45×10^{2}	3.11×10^{3}	
$k_{-1}^{\text{H2O}}, s^{-1}$	1.41×10^{-5}	3.73×10^{-6}	1.70×10^{-7}	
		Step 2		
K_a^{CH} (p K_a^{CH}), M	5.13×10^{-4} (3.29)		1.12×10^{-3} (2.95) 9.23×10^{-3} (2.04)	
k_2 ^H , M ⁻¹ s ⁻¹	3.72×10^{4}	2.40×10^{4}	7.75×10^{3}	
k_{-2} ^{H₂O} , s ⁻¹	19.1	27.2	69.7	
		Step 3		
pK_a^{OH}	$=14.70$	\approx 14.45	$= 13.65$	
$k_1^{H_2O}$, s ⁻¹			8.70×10^{-3}	
k_3 ^{OH} , M ⁻¹ s ⁻¹	9.40×10^{8}	1.70×10^{9}	1.80×10^{9}	
		Step 4 (B ⁻ = AcO ⁻) ^b		
k_4 , s ⁻¹	2.38×10^{10}	1.88×10^{10}	5.40×10^{9}	
k_4 ', s ⁻¹	7.25×10^{9}	5.50×10^{9}	1.50×10^{9}	
k_b , s ⁻¹	2.29×10^{9}	2.45×10^{9}	3.17×10^{9}	

Table VL Rate and Equilibrium Constants of the Steps in Scheme I for Benzylidene Meldrum's Acid and its 4 MeO and $4\text{-}NO_2$ Derivatives in Water at 25°C.^a

aRefs. 27 and 32. bSee Scheme IV.

2.7. Benzylidenmtalonaldehyde

Benzylidenemalonaldehyde (13) has recently been synthesized for the first time³⁵ and only a limited hydrolysis study focusing on the first step has been reported up to now.¹⁹ The activation towards nucleophilic attack provided by the two aldehyde groups in 13 is even stronger than that provided by the cyclic diester in benzylidene Meldrum's acid (12), as reflected in $pK_1^{H2O} = 4.79$ for 13 ($pK_1^{H2O} = 5.43$ for 12).

Apart from its high reactivity, two features distinguish 13 from the other olefins studied so far. (1) In aqueous solution, about $2/3$ of 13 is present in the equilibrium form 17. 17 is the enol form of 18 which, in Scheme I, corresponds to T_{OH}^0 . The higher stability of 17 compared to 18 is undoubtedly related to the fact that malondialdehyde (19) exists virtually exclusively in the enol form (20). (2) The carbonyl groups in 13 show

Table VII. Rate and Fquilibrium Constants of Water and Hydroxide Ion Addition to BenxylidenemaIonaIdehyde in Water at 25°C.^a

 $a_{\text{Ref. 19.}}$ benol = 17. c_{K_1} H₂O_{/K_n}enol corresponds to the ratio 17/13. d Addition of OH⁻ to carbonyl group to form 21.

high kinetic reactivity. As a consequence, OH⁻-addition to form 21 becomes a significant reaction at pH > 12.5 and acts as a preequilibrium (with an equilibrium constant of 22 M⁻¹) preceding the formation of T_{OH} .

A summary of rate and equilibrium constants for the benxylidenemalonaldehyde system is presented **in** Table VII.

2.8. *p-Nitrophenyl2-cyano-3-(p-methoxyphenyl)propenoate*

The hydrolysis of the title compound (22) proceeds by the usual mechanism of Scheme I.³⁷ However, hydrolysis at the ester site, to yield 2-cyano-3-(p-methoxyphenyl)propenoic acid (23) competes with the cleavage of the C=C double bond. Inoue and Bruice³⁷ were able to show that the branching of the two reactions occurs at the T_{OH} ⁻ stage rather than in the substrate or T_{OH}^{O} stage, i.e., Scheme V prevails.

Scheme V

2.9. *Trends* and **Generalizations**

From the above discussion of seven systems, some trends are to be noted and a few generalizations may be drawn.

(1) When the pK_a of CH₂XY is below 10 (Table I), the two conditions for detectability of T_{OH}⁻, namely high enough thermodynamic stability of T_{OH}^- relative to reactants and a faster rate of formation of T_{OH}^- than conversion of T_{OH}^- to further intermediates and products (see Sect. 2.1) are usually met.

(2) The addition of Me₂SO will usually further increase the rate of formation of T_{OH} relative to the rate of conversion of T_{OH}^- to products. This has definitely been established for benzylidenemalononitrile but is probably true for other systems as well. In the case of benzylidenemalononitrile, the reasons for this behavior are quite transparent: the increased nucleophilicity of OH⁻ accounts for the faster formation of T_{OH}^- while the decrease in the basicity of T_{OH}^- (pK_aCH, Table II) leads to slower rates of carbon protonation. In most other systems, the situation is more complex. The p K_a^{CH} is expected to increase with the addition of Me₂SO, but less so than the pK_a of water. Thus the pK_a difference between water and T_{OH} will be more unfavorable than in water and this should slow down the carbon protonation by water. However, because the *intrinsic* rate of the proton transfer will be enhanced by Me₂SO (Sect. 6.1), the protonation rate may actually be faster despite the unfavorable change in the pK_a -difference. This effect on the intrinsic rate will, in turn, be largely compensated by a similar increase in the intrinsic rate of nucleophilic addition of OH-; hence, the overall result is still an increase in the rate of formation of T_{OH}^- relative to its conversion to T_{OH}^0 , etc.

(3) When $X = NO₂ (Y = H)$ the intrinsic rates and hence the actual rate constants of all steps except for $T_{OH}^0 \nightharpoonup T_{O}^-$ are much slower than for the other systems. This has the interesting consequence that T_{OH}^0 becomes kinetically stable enough that it can be directly detected and even isolated.

(4) At the other extreme, when XY are very strongly activating (very low pK_a of CH₂ XY, Table I) and this activation is mainly due to a polar effect (high intrinsic rates, Sect. 6.1), k_4 for the collapse of T_0 becomes extremely high because CHXY⁻ is a very good leaving group. A case in point is benzylidene Meldrum's acid $(pK_a^{CH_2XY} = 4.84)$ where k_4 is faster than diffusional separation of T_0 ⁻HB (Scheme IV) and the reaction proceeds by an enforced preassociation mechanism

3. **Addition of Amines and Aminolysis of the C=C Double Bond**

3.1. General Mechanistic Considerations

The addition of an amine to an activated olefin can usually be described by equation 20. In most cases the acid-base equilibrium, $T_A^{\dagger} \rightarrow T_A^-$, is rapidly established and hence nucleophilic addition is rate limiting. However, a number of examples have been reported where deprotonation of T_A^{\pm} becomes rate limiting or co-rate

limiting under certain conditions. In these cases **the** reaction is better represented by

$$
AICH = CXY + RRNH \xleftarrow{\begin{array}{c}\n k_1 \\
k_2 \\
k_3\n \end{array}} T_A^{\pm} \xleftarrow{\begin{array}{c}\n k_2H_1O + k_2OH a_{OH} + k_2^B[B] \\
k_2H a_{H^+} + k_2H_2O + k_2^{BH}[BH]\n \end{array}} T_A
$$
\n(21)

Proton transfer is rate limiting when $k_1 > (>) k_2^{H2O} + k_2^{OH} a_{OH} - k_2^{B}[B]$ (k_2^{H2O} is usually negligible and **B** is usually equal to KK'NH), a condition favored at low pH and low amine concentrations. The most common situation that leads to rate limiting proton transfer is an unusually high k₋₁-value, either because the equilibrium constant for T_A^{\pm} formation is very small (e.g., for the reaction of morpholine with α -cyano-4nitrostilbene, $k_{-1} = 8.11 \times 10^5 \text{ s}^{-1}$, $K_1 = 1.36 \times 10^{-6} \text{ M}^{-1}$),³⁸ or because of a low intrinsic barrier (e.g., for the reaction of morpholine with benzylidenemalononitrile, $k_{-1} = 2.6 \times 10^5 \text{ s}^{-1}$, K₁ = 0.23 M⁻¹).³⁹ Interestingly, in the reaction of 1,1-dinitro-2,2-diphenylethylene with morpholine the relationship $k_{1} > k_{2}^{H2O} + k_{2}^{OH}a_{OH}$ + $k_2^B[B]$ also holds but not because k_{-1} is particularly high $(k_{-1} = 2.4 \times 10^3 \text{ s}^{-1})^{40}$ but because k_2^{OH} and k_2^{B} are strongly depressed due to extreme steric hindrance.

Just as the reaction of olefins with water or OH does not stop at the T_{OH}^- stage (Scheme I), neither do T_A^{\pm} and T_A^- which react further and are eventually hydrolyzed to the corresponding aldehyde, CHXY⁻ and amine. The mechanism of this hydrolysis, which typically occurs on a much slower time scale than eqs 20 or 21, can be observed as a separate kinetic process. This process is shown in Scheme VI.

In most cases the only significant pathways that lead from T_A^{\pm} to T_A° are $T_A^{\pm} \rightarrow T_A^{\circ} \rightarrow T_A^{\circ}$ and the intramolecular proton switch, $T_A^{\pm} \rightarrow T_A^{\circ}$ (k_i).⁴¹ The pathway via T_A^+ has only been observed in a few cases, most notably in the reaction of benxylideneacetylacetone with piperidine and morpholine. An unusually high pK_a^{\pm} , which favors T_A^{\pm} over T_A^{\pm} even at relatively high pH values, accounts for this behavior.

In the reactions that proceed through the $T_A^{\pm} \rightarrow T_A^{\pm} \rightarrow T_A^{\pm}$ pathway, carbon protonation of T_A^- is usually the rate limiting step while k_A and the subsequent hydrolysis steps are all fast. A few examples have been observed, though, where the proton transfer equilibrium, $T_A \rightarrow T_A^O$, is faster than the k₄-step. A case in point is the reaction of benzylidenemalononitrile with morpholine. Here the $T_A^{\rightarrow} T_A^O$ reaction becomes part of the fast kinetic process associated with amine addition to the olefin and eq 20 expands to eq 22.

Scheme VI

In the following sections we discuss a number of individual examples in detail.

4042

3 2. *Benzylidenemalonottitrile*

The systems that have been studied are the reactions of benzylidenemalononitrile (BMN) with piperidine in water, ⁴³ 50% Me₂SO-50% water³⁹ and 70% Me₂SO-30% water, ⁴³ and the reactions of a series of substituted substrates (Z-BMN) with piperidine in water and in 50% $Me₂SO⁴³$ Under most conditions the addition reactions can be described either by eq 20 (RR'NH = piperidine, $pK_a^2 >> pK_a^0$ and hence $K_0 << 1$ in eq 22), or by eq 22 (RR'NH = morpholine, pK_a^{\pm} < pK_a^0 and hence $K_0 > 1$). At low amine concentrations proton transfer is partially rate limiting for the morpholine reaction in 50% Me₂SO³⁹ but all kinetic analyses were performed under conditions of fast proton transfer. They provided values for k_1, k_1, pK_a^{\pm} and pK_a^0 which are summarized in Table VIII.

Table VIII. Rate and Equilibrium Constants for the Reactions of Benxylidenemalononitrile with Piperidine and Morpholine in Various Solvents at 2o'C.

a_{Ref.} 43. b_{Ref.} 39. c_{Ref.} 47.

Fig. 3 shows Hammett plots for k_1 , K_1 and k_1 for the reaction of piperidine with various Z-BMN's in 50% Me₂SO.⁴³ Despite the use of σ^+ substituent constants, the point for Z = 4-Me₂N is seen to deviate negatively from the plots of k_1 and K_1 . This suggests that the π -donor effect (16b) is stronger than in the hydroxide ion addition and, in fact, stronger than in the systems for which σ^+ has been defined.^{44,45}

Figure 3. Hammett plots for the reaction of piperidine with phenyl substituted benzylidenemalononitriles in 50% Me₂SO-50% water at 20°C. Point for 4-Me₂N substituent shows strong negative deviation in the k_1 and K_1 plots. From ref. 43.

The **p**-values, calculated without the deviating points, are $p(k_1) = 0.74$, $p(K_1) = 1.03$ and $p(k_1) = -0.29$. From these one obtains the normalized ρ -values, $\rho^{n}(k_1) = \rho(k_1)/\rho(K_1) = 0.72$ and $\rho^{n}(k_1) = \rho(k_1)/\rho(K_1) = -$ 0.28. $\rho^{n}(k_1)$ has also been called α_{nuc}^{n} since it represents a Brønsted type coefficient that alternatively can be obtained as the slope of a plot of log k , vs log. $K₁$.

It should be noted that the various **p-values** given above represent the substituent's response to both the negative charge on the carbanionic part of T_A^{\pm} and the positive charge on the amine nitrogen. A procedure has been developed to correct for the influence of the positive charge⁴⁶ which allows one to calculate ρ -values measuring the response to the negative charge only. They are $\rho_{eq}(C^-) = 2.28$ for K_1 and $\rho_{kin}(C^-) = 1.27$ for k_1 . This provides a corrected $\alpha_{\text{nuc,corr}}^{\text{n}}$ -value, $\alpha_{\text{nuc,corr}}^{\text{n}} = \rho_{\text{kin}}(C^-)/\rho_{\text{eq}}(C^-) = 0.56$. Comparison of $\alpha_{\text{nuc,corr}}^{\text{n}} = 0.56$ with $\beta_{\text{nuc}}^n = 0.42 \left(\beta_{\text{nuc}} \right)^n = \text{dlog } k_1 / \text{dlog } K_1$, by varying amine pK_a) shows a small imbalance for this reaction. This suggests that, just as for OH⁻ addition to BMN, resonance development at the transition state lags somewhat behind bond formation. This point will be discussed more thoroughly in Section 6.1.

The hydrolysis of T_A^- to form benzaldehyde and CH(CN)₂ - (Scheme VI) was studied for the system BMN/piperidine in 50% Me₂SO.³⁹ Proton transfer at carbon, $T_A^- \rightarrow T_A^0$, is rapid compared to the k₄-step and can be treated as a fast equilibrium step. Hence, Scheme VI simplifies to Scheme VII. A value of 66 s⁻¹³⁹ was initially reported for k_4 although it was later revised to 33 s⁻¹.⁴⁷

ArCH-CXY + RRNH
$$
\xrightarrow{K_1}
$$
 T_A^{\pm} $T_A^{-\frac{K_a^{\pm}}{H^+}}$ $T_A^{-\frac{H^{\pm}}{K_a^o}}$ T_A^o
\n $T_A^o \xrightarrow{\frac{k_4}{H^+}}$ ArCH=NRR' + CH(CN)₂⁻
\nArCH=O + RRNH

Scheme VII

3.3. *Benzylidene Meldrum's Acid and Benzylidene N,N'-Dimethylbarbituric Acid*

The reaction of amines with benzylidene Meldrum's Acid (BMA) and substituted BMA's has been investigated extensively. Addition to BMA (eq 20) as well as hydrolysis of the amine adduct (Scheme VI) was studied with piperidine, morpholine, n-butylamine, 2-methoxyethylamine, glycinamide, cyanomethylamine, hydrazine, methoxyamine and semicarbazide in water.^{48,49} Addition only was investigated with piperidine in 50%, 70%, and 90% aqueous $Me₂SO⁵⁰$ as well as in acetonitrile⁵¹ and chloroform,⁵¹ and piperidine addition to various substituted BMA's in water,⁴⁸ 50% aqueous Me₂SO^{48,50} and acetonitrile.⁵¹ The reaction of N,N'dimethylbarbituric acid (DMBA, 24) with piperidine, morpholine, benzylamine, diethylamine, Nmethylpiperidine and N-methylmorpholine, and of substituted DMBA's with piperidine was studied in acetonitrile.⁵¹

The addition reaction conforms to eq 20. Representative rate and equilibrium constants are summarized in Table IX. Fig. 4 shows a plot of log K_1 vs. pK_a of the amine for seven primary amines in water, while Fig. 5

amine		k_1 , M ⁻¹ s ⁻¹ k_{-1} , s ⁻¹	K_1, M^{-1}	pK_a^{\pm}	
		Water ²			
semicarbazide	1.64×10^{3}	2.94×10^{1}	5.50×10^{1}	3.42	
methoxyamine	2.66×10^{3}	9.90×10^{-1}	2.69×10^{3}	4.35	
hydrazine	1.35×10^{4}	5.03×10^{-2}	2.68×10^{5}	8.02	
(cyanomethyl)amine	3.40×10^{3}	1.76×10^{1}	1.93×10^{2}	5.46	
glycinamide	1.34×10^{4}	3.50×10^{-1}	4.39×10^{4}	8.00	
2-methoxyethylamine	2.53×10^{4}	3.01×10^{-2}	8.40×10^{5}	9.44	
n-butylamine	5.60×10^{4}	1.64×10^{-2}	3.41×10^{6}	10.60	
morpholine	1.75×10^{5}	1.98	8.80×10^{4}	8.90	
piperidine	2.70×10^{5}	1.30×10^{-2}	2.08×10^{7}	11.64	
		50% Me ₂ SO-50% Water ^b			
morpholine	3.19×10^{5}	4.11	7.76×10^{4}		
piperidine	6.69×10^{5}	4.94×10^{-2}	1.35×10^{7}		
		70% Me ₂ SO-30% Water ^b			
morpholine	7.33×10^{5}	13.3	5.52×10^{4}		
piperidine	1.40×10^{6}	3.63×10^{-1}	3.86×10^{6}		
		90% Me ₂ SO-10% Water ^b			
morpholine	8.88×10^{5}	55.3	1.60×10^{4}		
piperidine	2.09×10^{6}	3.44	6.08×10^{5}		
		Acetonitrile ^C			
morpholine	4.0×10^{5}	3.1×10^{2}	1.3×10^{3}		
piperidine	2.3×10^{6}	32	7.4×10^{4}		
		Chloroform ^c			
morpholine	1.0×10^5	7.0×10^{2}	1.4×10^{2}		
piperidine	1.2×10^{6}	57	2.2×10^{4}		

Table IX. Rate and Equilibrium Constants for Amine Addition to Benzylidene Meldrum's Acid in Various Solvents.

^aRef. 49. ^bRef. 50. ^cRef. 51.

shows the corresponding plots of log k_1 and log k_1 . The most noteworthy feature of these plots is that the k_1 values for the α -effect nucleophiles⁵² semicarbazide, methoxyamine and hydrazine correlate well with those for the other amines (Fig. 5), i.e., the α -effect amines do not show the frequently observed enhanced reactivity.^{52,53} On the other hand, the rate constants for the reverse process (k_1) are significantly depressed for the α -effect

Figure 4. Plot of log K_1 for amine addition to benzylidene Meldrum's acid vs. pK_a of the amine in water at 25°C. o: primary amines (n-BuNH₂, 2-methoxyethylamine, glycinamide, cyanomethyl amine). \Box : α -effect amines (hydrazine, mctboxyamine, semicarbazide). Adapted from ref. 49.

Figure 5. Plots of $\log k_1$ and $\log k_{-1}$ for amine addition to benzylidene Meldrum's acid vs. pK_2 of the amine in water at 25[°]C. o: primary amines (n-BuNH₂, 2-methoxyethylamine, glycinamide, cyanomethylamine). □: α -effect amines (hydraxine, methoxyamine, semicarbaxide). Adapted from ref. 49.

amines (Fig. 5) which leads to a significant enhancement of the equilibrium constants $(K_1, Fig. 4)$. These results support the notion that the α -effect has primarily a thermodynamic origin⁵⁴⁻⁵⁷ and will manifest itself in the rates of nucleophilic attack only if the transition state has a relatively strong resemblance with the product. The β_{nuc} ⁿ value of 0.26 (β_{nuc}^n = dlog k/dlog K₁ by varying the amine pK_a) suggests that bond formation has made rather little progress at the transition state which may explain the absence of a measurable α -effect on k_1 .⁵⁴

The Hammett plots for piperidine addition to substituted BMA's in water,⁵⁰ 50% Me₂SO⁵⁰ and acetonitrile⁵¹ are similar to those for addition to substituted BMN's and show similar or even stronger negative deviation for the strong π -donors 4-Me₂N and 4-Et₂N. This is consistent with the stronger electron-withdrawing effect of the $(COO)_2C(CH_3)_2$ -moiety compared to the $(CN)_2$ -moiety⁵⁸ and implies an even greater resonance stabilization in BMA (25) compared to BMN (16b).

The p-values for the piperidine reaction in 50% Me₂SO-50% water, obtained and defined in the same manner as in the BMN reaction, are: $\rho(k_1) = 0.35$, $\rho(K_1) = 0.90$, $\alpha_{\text{nuc}}^{\text{n}} = \rho^{\text{n}}(k_1) = \rho(k_1)/\rho(K_1) = 0.37$; $\rho_{\text{kin}}(C^-)$ = 0.48, $\rho_{eq}(C^-)$ = 1.93, $\alpha_{nuc,corr}^{\text{max}} = \rho_{kin}(C^-)/\rho_{eq}(C^-)$ = 0.25. In conjunction with β_{nuc}^{max} = 0.15 (piperidine/morpholine), one calculates an imbalance of $I = \alpha_{\text{nuc,corr}}^n - \beta_{\text{nuc}}^n = 0.10$.

A comparison with the structure-reactivity parameters of the benzylidenemalononitrile reaction is interesting. The $p(K_1)$ values are very similar (1.03 for BMN, 0.90 for BMA), indicating that in T_A^{\pm} there is not much more charge delocalization into $(COO)_2C(CH_3)_2$ -moiety than into the cyano groups, a conclusion corroborated by other evidence.^{59,60} On the other hand, $\rho_{\text{kin}}(C^-)$ for the BMA reaction (0.48) is substantially smaller than for the BMN reaction (1.27). This is paralleled by a much smaller β_{nuc}^{n} for BMA (0.15) compared with BMN (0.42), indicating a transition state with much less C-N bond formation in the BMA reaction.

Two points about these results are noteworthy. The first is that K_1 for the BMA reaction is much larger than for the BMN reaction (K₁ ratio ~10⁶) and thus the earlier transition state of the former reaction may be understood in the context of the Hammond-Leffler postulate.⁶¹ This view is supported by a general trend in β_{nuc} ⁿ that is inversely correlated with $K₁$ for the seven olefins for which such data are available under a common set of experimental conditions (Table X). In view of the many known violations of the Hammond-Leffler postulate⁶² and of the closely related reactivity-selectivity principle (RSP)⁶³ the significance of these observations is not clear, though.

The second point of interest is that despite the substantial difference in the transition state structures for amine addition to BMA and BMN, the imbalances, measured as $I = \alpha_{\text{nuc,corr}}^n - \beta_{\text{nuc}}^n$, are quite similar and small (0.10 for BMA, 0.14 for BMN), consistent with the notion that resonance does not play a major role in the stabilization of T_A^{\pm} in either reaction (see Sect. 6.1).

In acetonitrile and chloroform, K_1 for piperidine and morpholine addition to BMA are significantly smaller than in water as anticipated for the less polar solvents. For example, $K_1 = 1.64 \times 10^7 M^{-1}$, $48.74 \times 10^4 M^{-1}$ and 2.2×10^4 M⁻¹⁵¹ for piperidine addition in water, acetonitrile and chloroform, respectively. One might have expected that K_1 in these latter two solvents would be even smaller but intramolecular hydrogen bonding in T_A^{\dagger} (26) apparently counteracts some of the effects of the low solvent polarity.

Interestingly, the reduced K_1 -values in acetonitrile and chloroform compared to water are accompanied by increased k₁-values, indicating enhanced intrinsic rate constants in the less polar solvents. Such solvent effects on the intrinsic rate constants of carbanion forming reactions is a well-known phenomenon which will be discussed in detail in Section 6.

	$\beta_{\text{nuc}}^{\quad n}$	$log K_1$	Ref.	
PhCH=C(COO) ₂ C(CH ₃) ₂	0.15	7.13	50	
$PhCH=C(CN)$,	0.30	1.19	43	
PhCH=CHNO ₂	0.33	1.50	46	
$PhCH=C(COCH3)2$	0.34	1.74	82	
$PhCH=C(Ph)NO2$	0.37	1.65	88	
PhCH=C(CN)C ₆ H ₃ -2,4-(NO ₂) ₂	0.46	-1.89	38	
PhCH=C(CN)C ₆ H ₄ -4-NO ₂	0.57	-3.45	38	

Table X. β_{nuc}^n and log K₁ Values for Piperidine/Morpholine Addition to Activated Olefins in 50% Me₂SO-50% Water at 2o'C.

The second stage of the reaction of BMA with amines follows Scheme VI,^{48,64} with carbon protonation of T_A^- and/or k_i being rate limiting, and the pathway via T_A^+ being negligible.⁶⁵ In the presence of significant concentrations of BH (usually $BH = RR'NH_2^+$), the k_3^{BH} -pathway is dominant. In the absence of BH, the pHdependence of the rate is, in principle, consistent with any of the following three, kinetically equivalent pathways: k_i (intramolecular proton transfer), k_3 ^H (carbon protonation of T_A^{th} by H₃O⁺, preceded by the fast K_a^{th} equilibrium), and k_5^{H2O} (carbon protonation of T_A^{\pm} by water, followed by the fast K_a^{\pm} -equilibrium). The other pathways (k_5^H , k_3^H) are negligible. On the basis of structure-reactivity relationships it was shown that in most cases k_i >> k_f ^{HzO} + K_a⁺ k_f ^H, i.e., the intramolecular proton transfer is the dominant pathway.⁶⁴

The question of what k_i represents is actually more complicated than the previous discussion implies. One possibility is that k, indeed refers to an authentic, concerted, intramolecular proton transfer, with a transition state such as 27 or 28. There exist alternative possibilities, though, shown as transition states 29 and 30. These do

Figure 6. More O'Ferrall-Jencks diagram showing the different mechanistic possibilities for intramolecular assistance. The outer square refers to the unassisted pathways of Scheme VI. The inner square shows the three possible mechanisms for intramolecular assistance. The reaction through the inside of the square is the concerted intramolecular proton transfer $(k_i, 27)$ or 28). The pathways along the edges of the inner square involve hydrogen bonding stabilization of the respective transition states (29 for k_{3i} ^H, 30 for k_{5i} ^{H₂O}); the large dots indicate strong, the small dots weak, hydrogen bonding in the corner states of the inner square. From ref. 68.

not involve a direct conversion of T_A^{\pm} into T_A° but instead a stepwise reaction with intramolecular assistance. 29 indicates carbon protonation of T_A^- by H_3O^+ , with transition state stabilization by hydrogen bonding to the nitrogen, while 30 represents carbon protonation of T_A^{\pm} by water, with stabilization of the incipient hydroxide ion

4052 C. F. BERNASCONI

by intramolecular hydrogen bonding and by an electrostatic effect In order to distinguish these latter two mechanisms from the concerted process (k_i) as well as from simple unassisted carbon protonation of T_A^- by $H_3O^+(k_3H)$ and of T_A^{\pm} by H_2O (k_5^{H2O}), respectively, the rate constants associated with them are called k_{3i}^{H} and k_{5i} ^{H2O} respectively, with "i" symbolizing intramolecular assistance. The relationship between the various mechanisms is best appreciated by placing the reactions on a More O'Ferrall⁶⁶-Jencks⁶⁷ diagram (Fig. 6). The outer square in the figure refers to the unassisted pathways (k_3^H, k_5^H) , the inner square shows the step-wise catalytic pathways (k_{3i}^H, k_{5i}^H) , while the concerted pathway (k_i) is placed inside the inner square.

29 and 30 could be excluded on the basis of solvent isotope effects⁶⁸ and structure-reactivity relationships, 64 while 27 was shown to be inconsistent with the results of a proton inventory study.⁶⁸ Hence 28 is the prevailing mechanism which probably holds for intramolecular 1.3 -proton transfers from an electronegative atom (mainly O or N) to carbon in general.⁶⁹

3.4. *a-Cyano4-nitrostilbene and a-Cyano-2,4-dinitrostilbene*

The reaction of both α -cyano-4-nitrostilbene (31) and α -cyano-2,4-dinitrostilbene (32)

with piperidine, morpholine and n-butylamine were studied in 50% Me₂SO-50% water.^{38,47} With piperidine and n-butylamine the addition conforms to eq 20 but with morpholine proton transfer is co-rate limiting (eq 21) at low pH and low amine concentration. This is demonstrated in Fig. 7 which shows plots of τ_1^{-1} (the reciprocal relaxation time for equilibrium approach under pseudo-first-order conditions) vs. amine concentration in the reaction of 32. The curved portions of the plots refer to partially rate limiting proton transfer, with τ_1^{-1} given by

$$
\tau_1^{-1} = \frac{k_1(k_2 \frac{H_2O}{2} + k_2^B [RR'NH] + k_2^{OH} \frac{1}{2} \frac
$$

Figure 7. Reaction of α -cyano-2,4-dinitrostilbene with morpholine in 50% Me₂SO-50% water at 20°C. Dependence of τ^{-1} on amine concentration according to eq 23. From ref. 38.

while the straight parallel lines at high amine concentrations indicate $k_2^{H2O} + k_2^B [RR'NH] + k_2^{OH}a_{OH} \gg k_{1}$ which simplifies equation 23 to equation 24

$$
\tau_1^{-1} = k_1 [RR'NH] + k_{1} a_H + /K_a^{\pm}
$$
 (24)

Rate and equilibrium constants for amine addition are summarixed in Table XI. In the morpholine reactions, several rate constants for the proton transfer, $T_A^{\pm} \rightarrow T_A^-$, could also be evaluated. For k_2^{H2O} , k_2^{OH} , k_2 ^H and k_2 ^{H₂O}, the values are as expected for diffusion controlled proton transfer,³³ e.g., k_2 ^H $\approx 1.5 \times 10^{10}$ M⁻¹ s^{-1} for the morpholine adduct of 32. On the other hand, the k₂B and k₂BH values are significantly smaller than expected for normal acid-base reactions: e.g., for T_A^{\pm} derived from 32, $k_2^B = 1.44 \times 10^6$ M⁻¹ s⁻¹ for B = morpholine, 1.53×10^7 M⁻¹ s⁻¹ for B = 4-CNC₆H₄O⁻, and 8.05×10^5 M⁻¹ s⁻¹ for B = N-methylmorpholine. All these reactions are thermodynamically favored for which k_2^B is expected to be $\approx 6 \times 10^8$ to 3×10^9 M⁻¹ s^{-1} .34,70 The lower rates are caused by steric hindrance which is apparently not strong enough to slow down the proton transfer involving H_2O^+ , H_2O and OH⁻, but becomes substantial with the more bulky buffers.

The conversion of T_A^- to benzaldehyde and the respective carbanion and amine (Scheme VI) was studied for the piperidine and morpholine adducts of both 31 and 32. With the adducts of 31 cleavage of T_A^O (k₄) is rate

limiting $(k_4 << k_3$ ⁴⁴ + k_3 ^{OH} $_{\rm HOH}$ + k_3 ^B[RR'NH] + k_4]; with the adducts of 32 there is change from rate limiting formation of T_A^{α} (k₃H₂⁺ + k₃^{H₃H₂⁺ + k₃^{BH}₁⁺ + k₁^{H₂⁺ + k₁[/]K_a⁺) at low amine concentrations to rate}} limiting cleavage of T_A^O (k₄) at high amine concentrations. This is an interesting observation which suggests that the increase in k_4 due to the decreased basicity of 34 compared to 33 is greater than the increase in the deprotonation rate of T_A^O (mainly k_A^B) induced by the higher acidity of T_A^O derived from 32 compared to 31. It appears that this behavior is mainly a consequence of steric factors. First, steric hindrance to optimal π -overlap of the carbanion with the ortho nitro group reduces the acidity differences of the T_A^0 species to $\Delta pK \approx 3.0$ compared to $\Delta pK = 4.56$ for 33 vs. 34,⁷¹ and hence reduces the degree by which k_{-3} ^B for 32 is enhanced. Second, release of steric strain in T_A^O derived from 32 accelerates the k_4 -step beyond the effect resulting from the reduced basicity of 34 vs. 33. This latter conclusion is borne out by a numerical analysis that affords $k_4 = 4.5 \times 10^{-3}$ s⁻¹ for the piperidine adduct of 31 and $k_4 \approx 9.4 \text{ s}^{-1}$ for the piperidine adduct of 32.

Table XI. Rate and Equilibrium Constants for Amine Addition to α -Cyano-4-nitrostilbene (31) and α -Cyano-2,4-dinitrostilbene (32) in 50% Me₂SO-50% water.^a

	morpholine $(pK_a^{AH} = 8.72)^c$	piperidine $(pK_a^{AH} = 11.02)^{c}$	n -butylamine $(pK_s^{\text{AH}} = 10.65)^{\text{C}}$	
		31 (pK _a ^{CH} = 12.62) ^b		
k_1 , M ⁻¹ s ⁻¹	1.10	26.0	1.77	
k_{-1} , s ⁻¹²	$\approx 8.11 \times 10^5$	$=7.87 \times 10^{4}$	$\approx 1.79 \times 10^{4}$	
K_1, M^{-12}	$\approx 1.36 \times 10^{-6}$	$=3.57 \times 10^{-4}$	≈9.88 \times 10 ⁻⁵	
pK_a^{\pm}	≈ 6.37	≈ 8.67	$= 8.30$	
		32 (pK _a ^{CH} = 8.06) ^b		
k_1 , M ⁻¹ s ⁻¹	6.36	61.4	3.84	
k_{-1} , s ⁻¹	6.66×10^{4}	4.74×10^{3}	6.76×10^{2}	
K_1, M^{-1}	0.95×10^{-4}	1.29×10^{-2}	5.70×10^{-3}	
pK_t^{\pm}	5.83	8.13	7.76	

^aRef. 38. b_pK_a ^{CH} refers to CH₂(CN)C₆H₄-4-NO₂ and CH₂(CN)C₆H₃-2,4-(NO₂)₂, respectively. ^CAH = $RR'NH₂$ ⁺.

3.5. *l,I-Did-o-2,24iphenylethylene*

The kinetics of the reaction of 1,1-dinitro-2,2_diphenylethylene (10) with n-butylamine, piperidine, morpholine and aniline were measured in 50% Me₂SO-50% water.⁴⁰ The behavior of these systems is quite similar to that of the corresponding reactions of α -cyano-4-nitrostilbene and α -cyano-2,4-dinitrostilbene. With the more basic amines (piperidine and n-butylamine) the proton transfer equilibrium, $T_A^{\pm} \rightarrow T_A^-$, is rapid on the time scale of the addition step but with the less basic amines (morpholine and aniline) deprotonation of T_A^{\pm} is partially (morpholine) or entirely (aniline) rate limiting.

Detailed analysis of the various rate constants shows some unusual results (Table XII) which can be attributed to extreme steric crowding in T_A^{\pm} and T_A^- . Thus, k_1 for nucleophilic addition of n-butylamine (40 M⁻¹) s^{-1}) is larger than for piperidine addition (6.8 M⁻¹ s⁻¹). This is the only case known to us where the nucleophilic reactivity of piperidine towards an activated olefin is lower than that of n-butylamine; normally one has k_1^{Pip}/k_1^{n-1} $BuNH₂$ > 1, a relationship which holds for nucleophilic addition to electrophiles in general.⁷²⁻⁷⁸

Table XII. Rate and Equilibrium Constants for Amine Addition to 1,1-Dinitro-2,2-diphenylethylene in 50% Me₂SO-50% Water at 20°C.^a

	piperidine	morpholine	n -butylamine	aniline	
k_1 , M ⁻¹ s ⁻¹	6.8	0.95	40	~1	
k_{-1} , s ⁻¹	100	2.4×10^{3}	0.36	-5×10^6	
$K_1 = k_1/k_{-1}$, M ⁻¹	6.8×10^{-2}	4×10^{-4}	1.1×10^{2}	-2×10^{-7}	
	6.22	~23.94	5.91	-0.5	
pK_a^{\pm} pK_a^{AH}	11.00	8.72	10.65	4.25	

 $a_{\text{Ref.}}$ 72. b_{AH} = RR'NH₂⁺.

The proton transfer rate constants for $T_A^{\pm} \rightarrow T_A^-$ also show dramatic reductions, much more so than for the a-cyano-2,4dinitrostilbene system discussed in the preceding section. For example, for the deprotonation of T_A^{μ} in the thermodynamically favored direction, $k_2^{\mu} = 5 \times 10^5$ M⁻¹ s⁻¹ for B = 4-CNC₆H₄O⁻, 3.8 \times 10⁴ M⁻¹ s⁻¹ ¹ for B = morpholine, and 2.0×10^3 M⁻¹ s⁻¹ for B = N-methylmorpholine. Even k₂^H = 4.2 × 10⁶ M⁻¹ s⁻¹ for the N-protonation of T_A^- by H_3O^+ is 3.5 orders of magnitude lower than k_2^H in the α -cyano-2,4-dinitrostilbene system, and almost 4 orders of magnitude lower than the protonation of unhindered amines by $H_3O^{+,34,79,80}$ To put this rate reduction into perspective we note that the rate constant for protonation of the strongly hindered 2,6 di-t-butylpyridine by H_3O^+ is 3.7×10^8 M⁻¹ s⁻⁸⁷

3.6. *Bemylideneacetylacetone*

Piperidine and morpholine addition to benzylideneacetylacetone (35) as well as the hydrolytic cleavage of T_{A} ⁻ (Scheme VI) have been investigated in 50% Me₂SO-50% water.^{82,83}

The first stage of the reaction conforms to eq 20. What is unusual about this system is that the acidity of T_A^{\pm} is very much lower than for any other similar amine adduct studied to date. For example, for the piperidine adduct $pK_s[±] = 13.5$ which is 2.5 units higher than the pK_s of piperidinium ion. This contrasts with the piperidine adducts of other olefins for which $pK_a^{\pm} < pK_a^{\text{P1pH}}$, e.g., benzylidenemalononitrile $(pK_a^{\pm} - pK_a^{\text{P1pH}}) = -$ 0.72), α -cyano-2,4-dinitrostilbene (pK $\frac{\pm}{a}$ - pK $\frac{\text{Pi}}{a}$ H⁺ = -2.87), β -nitrostyrene (pK $\frac{\pm}{a}$ - pK $\frac{\text{Pi}}{a}$ H⁺ = -2.70).

The high pK_a^{\pm} of the amine adducts of benzylideneacetylacetone has been attributed to a strong intramolecular hydrogen bond as shown in 36. A consequence of the high $pK_{\rm a}^{\pm}$ is that the piperidine adduct is present in the T_A^{\perp} form rather than the T_A^{\perp} form over most of the pH-range. This may have been the reason for the erroneous structural assignment of T_A^{\perp} as the T_A° form (Scheme VI) in an earlier study of the reaction of piperidine with 4-methoxybenzylideneacetylacetone.⁸⁴

A further consequence of the predominance of the T_A^{\pm} form at most pH-values is that the hydrolytic cleavage of T_A^{\pm} to benzaldehyde and acetylacetone proceeds to a significant extent via T_A^{\pm} rather than T_A^- (Scheme VI), even at relatively high pH.

The stabilization of T_A^{\pm} by intramolecular hydrogen bonding not only affects the pK $\frac{1}{s}$ but it also enhances the equilibrium constant for amine addition (K_1) . However, the *rate* constant for addition, k_1 , is not correspondingly enhanced and therefore the *inrrinsic rate* constant appears abnormally low in comparison to other systems. This has been attributed to late development of the intramolecular hydrogen bond along the reaction coordinate (see also Section 6), although a steric effect may contribute to the abnormally low k_0 value.⁸²

Table XIII summarizes some of the rate and equilibrium constants for the benzylideneacetylacetone/amine systems; the kinetic and thermodynamic parameters referring to Scheme VI have been reported elsewhere.⁸³ The question as to whether the enol form of T_A^O (37) or T_A^+ (38) may be observable is an interesting one. 37 could not be detected which again is a consequence of the high pK $_{\circ}^{\pm}$. Even with the morpholine adduct, the basicity of the nitrogen (pK $_{\rm s}^{\pm}$ = 11.26) in T_A⁻ is significantly higher than the basicity of the oxygen so that nitrogen protonation predominates. On the other hand, no such competition between N and O exists in T_A^{\pm} and hence 38 was easily observed.⁸³

Table XIII. Rate and Equilibrium Constants for Amine Addition to Benzylideneacetylacetone in 50% Me₂SO-50% Water at 20°C.^a

	morpholine	piperidine	
k_1 , M ⁻¹ s ⁻¹	1.79	8.20	
k_{-1} , s ⁻¹	2.78	0.15	
$K_1 = k_1/k_{-1}$, M ⁻¹	0.64	54.7	
pK_a^{\pm}	11.26	13.5	

aRef. 82.

3.7. *p-Nitrostyrene and a-Nitrostilbene*

The reaction of β -nitrostyrene (11) with piperidine, morpholine, n-butylamine and aniline was studied in 50% Me₂SO-50% water at 20°C.^{46,85} Similar data were also obtained in water and in 70% Me₂SO-30% water for piperidine and morpholine addition,⁴⁶ and the effect of substituents in the phenyl group of β -nitrostyrene was investigated in water.

The addition reaction conforms to eq 20. When the equilibrium of eq 20 was approached from right to left after acidifying a solution of T_A^- derived from piperidine, partitioning of T_A^- into β -nitrostyrene (via T_A^{\pm}) and into T_A^O and/or T_A^+ was observed,⁴⁶ with T_A^O and T_A^+ reverting to the olefin rather than collapsing into PhCH=N⁺ R_2 and CH₂NO₂⁻ in a slower kinetic process. This allowed a determination of various rate and equilibrium constants in Scheme VI for a number of substituted β -nitrostyrenes. Table XIV presents a summary of some rate and equilibrium constants.

	k_1 , M ⁻¹ s ⁻¹	k_{-1} , s ⁻¹	K_1, M^{-1}	pK_a^{\pm}	
		Water ^a			
morpholine	1.37×10^{2}	95.0	1.44	5.87	
piperidine	6.61×10^{2}	0.84	7.90×10^{2}	8.44	
		50% Me ₂ SO-50% Water ^{a,b}			
morpholine	2.17×10^{2}	1.0×10^3	0.22	6.15	
piperidine	1.14×10^{3}	36	31.8	8.30	
n -BuNH ₂	31	1.25	24.8	8.62	
aniline	50	3.8×10^{6}	1.3×10^{-6}	2.2	
		70% Me ₂ SO-30% Water ²			
morpholine	2.26×10^{2}	8.0×10^3	2.8×10^{-2}	6.25	
piperidine	1.05×10^{3}	6.0×10^{2}	1.75	8.32	

Table XIV. Rate and Equilibrium Constants for Amine Addition to β -Nitrostyrene in Various Solvents at 20°C.

 $a_{\text{Ref. 46}}$, $b_{\text{Ref. 85}}$.

The substituent effects on k_1 , k_1 and K_1 paint an interesting picture of the transition state of the addition reaction. Fig. 8 shows Hammett plots for k_1 and k_1 using standard σ -values. Disregarding the effect of π -donor substituents discussed below, both k_1 and k_1 are seen to increase slightly with electron withdrawing substituents, yielding $\rho(k_1) = 0.27 \pm 0.02$ and $\rho(k_1) = 0.33 \pm 0.05$. For K₁ which is virtually substituent independent $\rho(K_1)$ $=-0.06 \pm 0.07$.

The small p-values are the result of a near cancellation of the effects of the negative and the positive charge. A similar but less complete compensation of the effect of the negative charge by that of the positive charge was observed in the amine addition to benzylidenemalononitrile (Section 3.2) and benzylidene Meldrum's acid (Section 3.3). Using the previously mentioned procedure to separate the two factors one finds for the effect of the negative charge $\rho_{\text{kin}}(C^-) \approx 0.56$, $\rho_{\text{eq}}(C^-) \approx 1.09$, $\alpha_{\text{nuc,corr}}^{\text{n}} = \rho_{\text{kin}}(C^-)/\rho_{\text{eq}}(C^-) \approx 0.51$. In conjunction with $\beta_{\text{nuc}}^{\text{n}}$ = 0.25 one calculates an imbalance I = $\alpha_{\text{puc,corr}}$ – β_{nuc} = 0.26. This imbalance is significantly larger than the imbalances for amine addition to benzylidenemalononitrile $(0.14)^{43}$ or benzylidene Meldrum's acid (0.10) ,⁵⁰ as expected for the formation of a strongly resonance stabilized nitronate ion. As discussed further in Section 6, it indicates a large difference in the charge distribution of the transition state (39, negative charge mainly on carbon as indicated by large 6 symbol) and that of the adduct (40, negative charge mainly on the nitro group).

Figure 8. Hammett plots for the reaction of piperidine with phenyl substituted β **-nitrostyrenes in water at 25°C. o: k₁.** \bullet **: k**₋₁. From ref. 46.

The π -donor substituents 4-MeO and 4-Me₂N deviate positively from both the k₁ and the k₋₁ plot, but more so from the k_{-1} plot (Fig. 8). As a consequence, K_1 , which is almost substituent independent for the other substituents, is strongly depressed by the 4-MeO and 4-Me₂N groups. The depressed K_1 values can be attributed to resonance stabilization of the olefin (41), just as

discussed for the corresponding benzylidenemalononitriles and benzylidene Meldrum's acids. However, in contrast to the reactions in these latter systems where k_1 was also depressed, k_1 for the 4-Me₂N- and 4-Me₀- β nitrostyrenes deviates *positively* from the Hammett plot. These positive deviations can be understood in terms of a transition state, which in exaggerated form may be represented by 42. The major difference between 42 and 39 is that in 42 the negative charge is extensively delocalized into the nitro group because this delocalization is largely built into the olefin (41). This provides extra stabilization to the transition state (42) which is not present in 39.86

Why is this effect not observed in the amine addition to benzylidenemalononitrile and benzylidene Meldrum's acid? It is believed that the delayed resonance (and salvation) has a more adverse effect on systems where resonance stabilization of the product is strong (nitronate ions) and hence these should be the systems that benefit the most from a situation where this resonance is already partiahy built into the reactant. It should be noted that an alternative interpretation of the positive deviations, in terms of a transition state with radicaloid character, is also possible as discussed in Section 5.2.

Piperidine and morpholine addition to α -nitrostilbenes (43) also conform to eq 20. The

dependence of k_1 , k_1 , and K_1 on the Z-substituent was studied with both amines in 50% Me₂SO-50% water.⁸⁸ This afforded the following structure-reactivity parameters: $\rho(k_1) = 0.90$, $\rho(k_1) = 0.02$, $\rho(K_1) = 0.88$, $\rho_{\text{kin}}(C^-)$ = 1.28, $\rho_{eq}(C^-)$ = 1.90, $\alpha_{nuc,corr}$ = $\rho_{kin}(C^-)/\rho_{eq}(C^-)$ = 0.67. In conjunction with β_{nuc} ⁿ = 0.37 one obtains an imbalance I = 0.30, similar to that for β -nitrostyrenes (0.26). Rate and equilibrium constants for piperidine and morpholine addition to the unsubstituted α -nitrostilbene are summarized in Table XV.

Table XV. Rate and Equilibrium Constants for Amine Addition to α -Nitrostilbene in 50% Me₂SO-50% Water at 20° C.^a

	morpholine	piperidine	
	17.6	117	
	52	2.60	
	0.34	45	
k_1 , M ⁻¹ s ⁻¹ k_{-1} , s ⁻¹ K_1 , M ⁻¹ pK_a^{\pm}	7.26	9.73	

aRef. 88.

3.8. Addition to an *Unactivated Olefin*

Under certain conditions, an amine can add to a C=C double bond that is not activated by any electron withdrawing substituent. A dramatic example, which can be regarded as the reverse of a Hofmann elimination, is shown in eq 29. In 20% aqueous dioxane, this reaction has a half-life of only 3.3 s at 25°C.⁸⁹ The mechanism is believed to consist of intramolecular nucleophilic addition **that is concerted with proton transfer. The reaction** is not only driven by its intramolecularity but also by the relief of substantial ground state strain. A similar situation prevails in the iniramolecular addition of a phenolate to non-activated double bond, as will be shown in Section 5.6.

3.9. Summary and *Generalizations*

As we did for the hydrolysis reactions, there are a few general conclusions that can be drawn from the above discussions.

(1) With activating groups that correspond to a pK_a for CH₂XY of \leq 11.0 (Table I), the formation of T_A^{*} by reaction with strongly basic amines (e.g., piperidine) is usually rate limiting with the proton transfer, $T^{\pm} \nightharpoonup$ T_A^- + H⁺, being a fast equilibrium (eq 20). With less basic amines (e.g., morpholine), deprotonation of T_A^{\pm} may become rate limiting when either of three conditions are met. (a) XY are poor π -acceptors which leads to low intrinsic barriers of the nucleophilic step (Sect. 6.1) and hence k_{-1} is large. Benzylidenemalononitrile is a prime example. (b) Activation of XY is weak, i.e., $pK_a^{CH2XY} \gg 11.0$ which implies a small K_1 and a large k_{-1} value. This situation prevails with α -cyano-4-nitrostilbene (pK_a^{CH₂XY} = 12.62 in 50% Me₂SO). (c) Steric hindrance reduces the proton transfer rates, as is the case with α -cyano-2,4-dinitrostilbene and especially with 1,1-dinitro-2,2diphenylethylene.

(2) Strong intramolecular hydrogen bonding enhances the stability of T_A^{\dagger} (K₁) but since intramolecular hydrogen bonding is typically poorly developed in the transition state there is no corresponding increase in the rate of nucleophilic attack (k,). This phenomenon is clearly manifested with benzylideneacetylacetone.

(3) Through conjugation in the olefin with strong π -donors in the phenyl group (16b, 25, 41) always lowers the equilibrium constant (K_1) but the effect on the rate constant (k_1) varies with the identity of XY. When XY are poor π -acceptors, k_1 is also lowered as is the case with benzylidenemalononitrile and benzylidene Meldrum's acid. With strong π -acceptors such as nitro, k_1 is enhanced because the transition state benefits from the built-in delocalixation of the negative charge (42).

(4) The hydrolysis of T_A ⁻ to form benzaldehyde and CHXY⁻ usually involves rate limiting protonation on carbon to form T_A^0 , although in some cases collapse of T_A^0 into PhCH=N⁺R₂ and CHXY⁻ is rate limiting. An interesting observation is that the reaction of T_A^- with the hydronium ion proceeds preferentially via fast nitrogen protonation to form T_A^{\pm} , followed by rate limiting intramolecular proton switch, rather than by direct carbon protonation of T_A^- .

4. **Addition of Thiolate Ions**

4.1. General *Features and Biochemical Relevance*

The addition of thiols or thiolate ions to $C = C$ double bonds is of particular interest because of its relevance to biochemical systems. For example, the action of thymidylate synthetase involves the nucleophilic addition of a protein thiol group of the active site of the enzyme to the 5-position of 2'-deoxyuridine-5'-phosphate.⁹⁰ This mode of reaction is consistent with S-nitro-2'deoxyuridine (46) being a potent inhibitor of thymidylate synthetase by virtue of its forming a covalent adduct, 47, with the enzyme. Model studies have shown that the 2 mercaptoethanol

 $R = 2$ '-deoxyribose 5'-phosphate

anion undergoes reversible non-enzymatic nucleophilic addition to 46 to form the adduct 48.91 Other cases of non-enzymatic Michael additions to the 6-position of uracil and 5-substituted uracil derivatives are known.^{91,92}

Another biochemically interesting system is the β -lactamase catalyzed hydrolysis of cephalosporin (49) shown in Scheme VIII. Page⁹³ has shown that with good leaving groups (e.g., $L = N$ -pyridyl) the reaction leads to the α, β -unsaturated imine (51) whereas with poor leaving groups (e.g., L⁻ = n-BuS⁻) the reaction stops at the **enamine (SO) stage. The reversible** equilibrium between 50 and **51 with** thiols could be **studied** independently at **pH 7. The** antibacterial activity of cephalosporins is thought to be due to Michael-type addition of a nucleophilic group on the enzyme to the α , β -unsaturated imine 51 which irreversibly inactivates the enzyme.⁹³

Some investigations of thiol or thiolate addition to olefins for which data on amine addition and hydrolysis are also available have been reported. An early series of rate and equilibrium studies involved the reaction of nbutanethiol with benzylidene-1,3-indandione, benzylideneacetylacetone, benzylidenemalononitrile, βnitrostyrenes, and some other olefins in 20% ethanol-80% water.⁹⁴ At about the same time Friedman et al.⁹⁵ examined relative nucleophilic reactivities of thiolate ions and amines in reactions with various α, β -unsaturated compounds such as acrylonitrile, methylacrylate, etc. in water. For comparable pK_a values of the nucleophile they found the thiolate ions to be approximately 150 to 300 fold more reactive than primary amines. Similar findings have recently been reported for nucleophilic addition to 2-furylethylenes.%

Scheme VIII

4.2. a-Nitrostilbene amf B-Methoxy-a-nitrostilbene

The reactions of α -nitrostilbene with several thiolate ions (RS⁻ with R = Et, HOCH₂CH₂, CH₃OCOCH₂CH₂, CH₃OCOCH₂) and the reactions of HOCH₂CH₂S⁻ with several substituted α -nitrostilbenes $(Z = 4$ -Me, H, 4-Br, 3-NO₂, 4-NO₂) have been studied in detail in 50% Me₂SO-50% water, eq 27.97 Representative rate and equilibrium constants are summarized in Table XVI.

Table XVI. Rate and Equilibrium Constants for the Addition of Various Thiolate Ions to a-Nitrostilbene in 50% Me₂SO-50% Water at 20°C.^a

	$CH3CH3S-$	HOCH ₂ CH ₂ S ⁻	CH ₃ OCOCH ₂ CH ₂ S ⁻	CH ₃ OCOCH ₂ S ⁻	
k_1 , M ⁻¹ s ⁻¹	6.68×10^{4}	5.81×10^{4}	4.82×10^{4}	2.85×10^{4}	
k_{-1} , s ⁻¹	3.49×10^{-3}	7.02×10^{-3}	9.47×10^{-3}	1.37×10^{-1}	
K_1, M^{-1}	1.91×10^{7}	8.16×10^{6}	5.09×10^{6}	2.08×10^{5}	
pK_a^{RSH}	11.26	10.54	10.40	8.83	

aRef.97

Since data for piperidine and morpholine addition to a similar series of α -nitrostilbenes have been reported under identical reaction conditions,⁸⁸ some interesting comparisons can be made. For example, for a given pK_a of the nucleophile the equilibrium constants for thiolate ion addition are 4 to 5×10^5 fold higher than for amine addition. These results are consistent with the well-known fact that sulfur bases have stronger basicities toward carbon than do oxygen or nitrogen bases.⁹⁸⁻¹⁰⁰ Within the framework of hard-soft acid-base interactions¹⁰⁰ this can be understood as the soft (polarixable) alkene having a stronger affinity to the soft sulfur bases than to the hard nitrogen or oxygen bases.

The rate constants are also much higher for thiolate ion addition, with $k_1^{RS^-}/k_1^{R2NH} \approx 500-1000$ when RS⁻ and R₂NH of similar pK_a are compared. Part of the rate enhancement for the thiolate ions over the amines may be attributed to the larger equilibrium constants, but most of it comes from a higher *intrinsic* rate constant (k_o) for thiolate ion addition (log $k_0 = 3.43$) compared to amine addition (log $k_0 = 1.43$). One possible way to understand this higher intrinsic rate constant is to assume that the soft acid-soft base interactions develop early along the reaction coordinate, 97 a notion that will be elaborated upon in Section 6.1.

Another interesting feature of the reaction of thiolate ions with α -nitrostilbenes is the large transition state imbalance manifested in the large difference between $\alpha_{nuc}^n = 0.87$ and $\beta_{nuc}^n = 0.19$. This imbalance is much larger than that for the reaction of amines with α -nitrostilbenes $(\alpha_{\text{nuc,corr}}^n = 0.67, \beta_{\text{nuc}}^n = 0.37).^{88}$ The reasons for this much larger imbalance are not entirely clear, and there are probably several contributing factors.⁹⁷ One such factor may be related to the disproportionately large progress in the soft-soft interactions at the transition state **which are believed to be the main cause for the enhanced intrinsic rate constant.. The strong polarizability of the** thiolate ion would allow substantial negative charge density to develop on the α -carbon (large α_{nuc}^n) without extensive loss of the charge from the nucleophile or extensive bond formation (small β_{nuc}^{n}).⁹⁷ An earlier report¹⁰¹ of a rather large Hammett o-value in the reaction of p-toluenthiolate ion with arylvinylsulfones, suggesting an α_{mn} ⁿ which is probably substantially larger than β_{nuc} ⁿ, is consistent with the above results.

The reaction of β -methoxy- α -nitrostilbene (52) with the same four thiolate ions (R = CH₃CH₂, HOCH₂CH₂, CH₃OCOCH₂CH₂ and CH₃OCOCH₂) was also studied in 50% Me₂SO-50% water.¹⁰² In contrast to all olefinic substrates discussed so far in this report, 52 has a leaving group which can depart as shown in eq 27, to give the product of a nucleophilic vinylic substitution. The main interest in this reaction is that it constitutes the first known example of a nucleophilic vinylic substitution in which the intermediate could be directly observed and the rate constants of all steps (k_1, k_{-1}, k_2) could be measured. For R = HOCH₂CH₂S⁻ they are k₁ = 3.90 × 10² M⁻¹ s⁻¹, k₋₁ = 5.10 × 10⁻² s⁻¹, and k₂ = 9.58 × 10⁻⁶ s⁻¹.

4.3. *Actykmitde*

A recent study of thiolate ion addition to acrylonitrile and acrylonitrile derivatives¹⁰³ is of particular mechanistic interest because it addresses the question whether a concerted and stepwise mechanism could **coexist.** Such possible coexistence had been suggested by Breslow.¹⁰⁴ The two mechanistic pathways are shown in Scheme IX. Note that in the reverse direction the reaction is equivalent to an 1,2-elimination by the ElcB and E2 mechanism, respectively.

The stabilization of the intermediate by only one cyano group is insufficient to make it directly detectable. A combination of rate studies both in the addition and the elimination directions with deuterium exchange

4066 C. F. BERNASCONI

experiments, kinetic solvent deuterium isotope effects, and product discrimination isotope effects demonstrated that the reaction is stepwise and excluded a concurrent concerted pathway.¹⁰³ Depending on the substrate/RS⁻ combination, rate constants for thiolate ion expulsion (k_{-1}) were estimated to be in the order of 10¹⁰ to 10¹³ s⁻¹. The upper limit (with $R = C_6F_5$) for these rate constants is close to the frequency of a C-S stretching vibration.¹⁰⁵ These large rate constants are consistent with a change-over to a concerted reaction for still better leaving groups than $C_6F_5S^-$, such as I⁻ or Br⁻.¹⁰⁶

$$
R = CH_3NC_5H_4-2, C_6H_5, C_6F_5, 4-NO_2-3-CO_2-C_6H_3
$$

Scheme IX

An interesting by-product of this study is the discovery that the intermediate is not a free carbanion which is diffusionally equilibrated with the aqueous solvent.^{103a} The kinetic solvent isotope effect and data on buffer catalysis indicate extensive internal return of the abstracted proton to the carbanion from BH+ as well as from water when $B = OH^-$. A mechanism that is consistent with these observations is shown in Scheme X; in keeping with the original paper,¹⁰³ the reaction is shown as elimination from left to right. Assuming a $k_5 \approx 10^{11} s^{-1}$ for the exchange reaction, the experimentally accessible k_{-t}'/k_{s} ratio affords $k'_{-1} \approx 2 \times 10^{11}$ s⁻¹ for the internal return step with $B = OH^{-}$.

Scheme X

5. Addition of CN^- , N_3^- , F^- , RO^- and Carbanions

5.1. *9-Methylenejltwrenes*

A kinetic study of the reaction of 9-(dinitromethylene)fluorene (53), 9-(dicyanomethylene) fluorene (54), and 9-(nitromethylene)fluorene (55) with CN^- in water, methanol, Me₂SO, DMF,

25% aqueous sulfolane, of MeO⁻ in methanol, and of N₃⁻ in DMF was reported by Hoz and Speizman.¹⁰⁷ This study afforded rate constants (k_1) for nucleophilic addition to the 9-position (eq 28) which were correlated with the Ritchie^{78,108} N₊ parameter. The correlations were linear but, unlike Ritchie's anion-cation combination reactions for the slopes were significantly larger than unity: 1.23 for 53, 1.29 for 54, 1.50 for 55. These results will be considered in more detail in section 6.2.

Another interesting observation is that 55 which is the least reactive of the three compounds, displays ambident behavior.^{107b} In water, CN⁻ attacks the 9-position (eq 28) but in Me₂SO and DMF, reaction occurs mainly at the α -position (eq 29). The authors interpret these results in terms of a transition state possessing

radicaloid character and which can be understood as a resonance hybrid of 58, 59 and 60. MNDO calculations¹⁰⁹ suggest that in water the spin population shifts from the α -carbon (60) to the 9-position (59). If one assumes that

bond formation with Nu' is most likely with the *carbon* that has the most radical character, the change in positional selectivity with the solvent is easily understood.

According to Hoz,¹⁰⁹ transition states with radicaloid character may be a general phenomenon in nucleophilic reactions involving substrates with low lying LUMOs (alkenes, aromatic compounds, acyl compounds, etc., but not S_N 2 type substrates). This notion fits in very well with similar proposals by Shaik, 110 Pross¹¹¹ and Kochi.¹¹² It should be pointed out, though, that a radicaloid transition state is not *required* to explain the solvent effect on the positional selectivity of 55. A mote "classical" interpretation would be as follows. Attack at the 9-position (eq 28) creates a nitronate ion which is less well solvated and hence less stable in the dipolar solvents than water. This effect is nicely illustrated by the solvent effect on the pK_a of nitromethane (10.2 in water, 113 17.2 in Me₂SO¹¹⁴). One might expect that the reduced stability of the nitronate ion should be reflected in a reduced *rate* of nucleophilic attack but this reduction should be relatively small because the *intrinsic* rate constant of nitronate ion forming reactions increase in dipolar aprotic solvents^{25,46} as elaborated upon in Section 6.1. Attack at the α -position (eq 29) leads to a highly dispersed fluorenyl ion which is *more* stable in the dipolar aprotic solvents (e.g., pK_a of 9-cyanofluorene is 10.7 in water,^{115,116} 8.3 in Me₂SO¹¹⁷; free energies of transfer from water to 90% Me₂SO show the effect even more dramatically¹³³). The higher stability should be reflected in a higher rate of nucleophilic attack even though this increase is possibly attenuated by a slight decrease in the intrinsic rate constant^{116,136} (see Sect. 6.1). In conclusion it appears quite plausible that the solvent effect on the positional selectivity of 55 can be explained "classically" by a somewhat enhanced rate at the α -position combined with a small decrease in the rate of attack at the 9-position in the dipolar aprotic solvents. Note that this discussion ignores the effect of solvent on the nucleophilic reactivity of CN⁻. This is justified since this factor should affect equations 28 and 29 in a similar way. We shall return to the question of radicaloid vs. more classical transition states in Section 5.2.

In a separate study, Hoz et al.¹¹⁸ were able to measure k_{-1} for Nu⁻ = CN⁻ and MeO⁻ with 54 and 55 after generating 56 by deprotonation of 61 in an ElcB scheme. For both nucleofuges k_{-1} was much higher with 54 than 55; since the thermodynamic stability of 56 derived from 54 and 55 is approximately the same, these results show that the *intrinsic rate* constant for eq 28 is much lower with the nitro compared to the dicyano compound.

This phenomenon can be attributed to the stronger resonance stabilization of nitronate ions compared to malononitrile type anions, a general observation to be elaborated upon in Section 6.1.

The methoxide, ethoxide, isopropoxide and trifluoroethoxide ion adducts of 9-(dinitromethylene)fluorene (53) were studied with respect to their hydrolytic cleavage in water¹¹⁹ which proceeds according to Scheme XI. There is a strong similarity between this reaction and the breakdown of the hydroxide ion adducts (Scheme I), and hence we use the symbols T_{OR}^- and T_{OR}^0 in analogy to T_{OH}^- and T_{OH}^0 in Scheme I, and the symbol k_{34} for the rate constant of the breakdown of T_{OR}^o. The reported k₃₄-values are 3.25×10^{-3} s⁻¹ (R = i-Pr), 2.79×10^{-3} s⁻¹ $(R = Et)$, 9.2 × 10⁻⁴ s⁻¹ (R = Me) and 1.92 × 10⁻⁵ s⁻¹ for (R = CF₃CH₂). The much lower rate constant for the trifluoroethoxide adduct reflects the reduced push by the less basic oxygen which decreases the stabilization of the incipient oxocarbonium ion.

5.2. I,l-DiaryL24troethylenes

The rates of CN⁻ addition to 1,1-diaryl-2-nitroethylene (62) were studied in water and in Me₂SO by Gross and Hoz.⁸⁷ A plot of log k_1 vs. σ^o gave a good correlation from which the points for the p-methoxy

substrates $(Z = H, Z' = \text{MeO}; Z = \text{MeO}, Z' = H; Z = Z' = \text{MeO})$ showed positive deviations in water while in Me₂SO these points are on the Hammett line. These results were attributed to a transition state which has radicaloid character (58 \leftrightarrow 59 \leftrightarrow 60). In water with 59 a major contributor to the resonance hybrid (Section 5.1) the rate enhancements by the p-methoxy group(s) can be understood as a mesomeric stabilization of the lone electron on the benzylic carbon. In Me₂SO 59 becomes disfavored and hence there is no special acceleration by the p -MeO group(s).

It should be recalled at this point that the reaction of piperidine with substituted β -nitrostyrenes show similar positive deviations for the p-MeO, as well as for the p-Me₂N group in water (Section. 3.7, Fig. 8). These results were interpreted in terms of resonance stabilization of the carbanion being already built into the substrate. In an attempt to distinguish between these two interpretations, we have recently obtained preliminary results on the reaction of HOCH₂CH₂S⁻ with substituted β -nitrostyrenes in water.¹²⁰ In view of the absence of a special acceleration by the p-MeS substituent which is even a better radical stabilizer than p-MeO, 121 we tentatively

disfavor the notion of a radicaloid transition state and prefer an intetpretation of Gross and Hoz' results along the lines offered in Section 3.7. However we feel the matter is by no means settled.

5.3. *Bicyclo-[1.1.0]-butane carbonitrile*

Even though bicyclo- $[1.1.0]$ -butane carbonitrile (63) is a saturated molecule its behavior

resembles that of an olefin in several respects, 122 not the least of it being that it adds nucleophiles as shown in eq 31. A comparative study of the rates of MeO⁻ (in MeOH) and i-PrO⁻ (in i-PrOH) addition to 63 and to crotonitrile (64)¹²³ yielded the rate ratios: $k_{64}/k_{63} = 8$ for MeO⁻ and 3 fori-PrO⁻, indicating very similar reactivities of the central bond in 63 and the double bond in 64. If allowance is made for steric and electronic effects of the substituents in 64 the authors concluded that the central bond of 63 is actually more reactive than the double bond in 64.

$$
RO^{-} + CH_{3}CH \longrightarrow CH_{3}CH \longrightarrow CH_{3}CH \longrightarrow CH_{3}CH \longrightarrow CH_{3}CH \longrightarrow CH_{3}CN \longrightarrow CH_{2}CN
$$
\n(32)

5.4. The Anions of Malononitrile, Nitromethane and 1,3-Indandione as Nucleophiles

The reactions shown in eqs 33-35 have been investigated in 50% Me₂SO-50% water.¹²⁴ Equations 33-35 show which rate and equilibrium constants were experimentally accessible. In eq 33 the proton transfer equilibrium is rapidly established under all reaction conditions while in eq 34 the rate constants for the proton transfer could be measured separately. In eq 35, cyclixation, to form the isoxaxole 65 is faster than reversion of the adduct to reactants and hence only k_1 could be measured.

A point of interest regarding eq 34 is that the enol form of the adduct, 66, could be observed. The ketoenol equilibrium constant, K_E = [enol]/[ketone] = 0.204 is considerably larger than K_E for 1,3-indandione (1.48 × 10^{-3}). The enhanced stability of 66 has been attributed to intramolecular hydrogen bonding.^{124b}

Rate and equilibrium constants for eqs 33-35 are summarized in Table XVII. There is a trend towards higher equilibrium constants (K₁) from eq 33 to eq 35 but a sharp decrease in k_1 in the same direction. This result

PhCH = C(CNh + HC(CN);? + PhCH-C(CN)2- +-\$e I WW2 PhCH I -CWW2 QWW2 PhCH=C' com 'co ⁺a 0 **T&j c/** co +hcH-cf- 0 & kc **P oc' ho ;=I** ⁰ phcH=am, + as2=NOz- ^h **- PhCH --cHNO2- I (332NoZ PhCH--cH Ai2 :+_o-** 65 (33) (34) (35)

PhCH- c

66

indicates a strong decrease in the intrinsic rate constant from eq 33 \rightarrow eq 34 \rightarrow 35. This trend reflects the increased resonance stabilization of the adduct as well as of the nucleophile from cyan0 to carbonyl to nitro, a trend that has been discussed^{124a} in the context of a Marcus¹²⁵ type formalism.

Table XVII. Rate and Equilibrium Constants for Carbanion Addition to Olefins in 50% Me₂SO-50% Water at 20°C.

	Eq $33a$	Eq 34 ^b	$Eq 35^C$	
k_1 , M ⁻¹ s ⁻¹	9.50×10^{5}	7.23×10^{3}	17.6	
k_{-1} , M ⁻¹ s ⁻¹	6.52	9.35×10^{-3}	~3.5 \times 10 ⁻⁶ (est) ^d	
K_1, M^{-1}	1.45×10^{5}	7.73×10^{5}	~5 \times 10 ⁶ (est) ^d	
pK_a^{CH}	5.07	3.05		

 a_{Ref} 124a. b_{Ref} 124b. CRef. 124c. $d_{\text{Estimated}}$.

5.5. 1,X-Dijluoro-2-arylethyienes

The reaction of methoxide ion with l,l-difluoro-2-(m-nitrophenyl)ethylene (67a) and with the pnitro derivative (67b) was investigated in methanol with the aim to learn more about the details of the subsequent protonation of the carbanionic adduct (68). 126 The adduct partitions into the vinylic substitution product, 69, and the protonated adduct (70). Interestingly, the kinetic isotope effect for the protonation step is very small for the m-nitro derivative (1.1 to 1.5 depending on the temperature) but quite large for the p-nitro derivative (5.9 to 15, depending on the temperature). These results are interpreted in terms of a two-step proton transfer as shown in eq 37.

With the m-nitro derivative, formation of the hydrogen bonded encounter complex (k_2) is rate limiting, which is consistent with the small isotope effects, while the large isotope effect with the p-nitro compound requires that the k_3 -step is rate limiting. This difference between the two compounds presumably arises from the fact that with the m-nitro compound the carbanion is essentially localized (high k_2) while the more effective delocalization of the charge in the p-nitro derivative reduces k_3 and enhances k_{-2} , rendering k_3 rate limiting.

Similar investigations in related systems, coupled with studies of the reaction in the reverse direction, have led to interesting conclusions regarding the mechanistic details of certain ElcB eliminations promoted by alkoxide ions and of proton transfers between carbon acids and oxyanions.126

5.6. Addition to an Unactivated Olefin

The reaction of 71 to form 73 proceeds at remarkably fast rates, considering that the olefin is not activated. For example, $k_{obsd} = 1.38 \times 10^{-2} s^{-1}$ with BH = H₂O, X = H at 39°C.¹²⁷ Apparently, the intramolecularity of the reaction and the concerted protonation of the incipient carbanion overcome the lack of activation; a somewhat similar situation can be found in the reaction shown in eq 25 (Section 3.8).

The general acid catalysis of eq 38 leads to a very small Brønsted α -value of 0.06 \pm 0.05 while the dependence on the X-substituent (X = H, Br, COCH₃, CH=O) results in a Hammett ρ values of -1.43. The ρ value which compares with $p = -2.1$ for the neutralization of phenolate ions¹²⁸ indicates substantial charge transfer from the oxygen to carbon in the transition state, but the small α -value suggests that proton transfer has made very little progress, i.e., there is a considerable amount of negative charge on the alkene carbon. These structure-reactivity coefficients are thus consistent with the preassociation mechanism shown in eq 38, and a transition state for the $72 \rightarrow 73$ step as 74.

6. **Structure-Reactivity Relationships in Carbanion-forming Reactions.**

6.1. *The Principle of Nonperfect Synchronization*

Table XVIII presents a summary of intrinsic rate constants for amine and hydroxide ion addition to olefms activated by various XY groups in 50% Me₂SO-50% water, and for deprotonation of carbon acids activated by the same XY's. The log k_0 values for the amine addition and proton transfers are quite reliable since they were obtained by interpolation or extrapolation of the appropriate Brønsted plots. In the case of OH-addition the log k_0

values should be regarded only as approximations since Brønsted plots were not available; log k_0 was estimated as $\log k_0 \approx \log k_1^{OH} - 0.5 \log K_1^{OH}$, i.e., by arbitrarily assuming $\beta_{\text{nuc}}^n = 0.5$.

The most striking feature of Table XVIII is that k_0 for the addition reactions (except for benzylideneacetylacetone discussed below) shows the same qualitative dependence on XY as for the proton transfers, i.e., there is a decrease in k, with increasing r-acceptor ability of XY. A similar trend also appears to prevail in the k_4 -steps of Scheme I and Scheme VI as discussed elsewhere. ¹²⁹ These observations suggest that carbanion forming reactions are affected by the same factors, irrespective of the specific mode by which the carbanion is generated. $129,130$

There are some *quantitative* differences, though, which are best illustrated by the plot of log k_n for amine addition to the olefms vs. log k, for proton transfer shown in Fig. 9. The slope of this plot is 0.38, indicating a substantial attenuation of the sensitivity of log k_0 to the resonance effect in the olefin additions.

The decreasing trend in k_n with increasing resonance stabilization of the carbanion has been attributed to a lag in the development of this resonance and the concomitant solvation of XY behind bond formation at the transition state.¹²⁹⁻¹³¹ The lowering of k_0 by this lag is a consequence of a general principle that we have called the principle of nonperfect synchronization (PNS). 129-131 This principle states that a product stabilizing factor that develops late along the reaction coordinate, or a reactant stabilizing factor that is lost early always lowers k_0 . Conversely, a product destabilizing factor that develops late or a reactant destabilizing factor that is lost early increases k_0 . "Early" and "late" are defined in relation to the "main process" which is equated with bond formation or cleavage, or the transfer of charge from one reactant to another. Product or reactant stabilizing (destabilizing) factors include resonance, hydrogen bonding, solvation, and some types of steric and electrostatic effects.

The evidence for the lag in the development of resonance and solvation of the carbanion is mainly based on disparities in Brønsted coefficients generated by varying the nucleophile ($\beta_{\rm nuc}$ ⁿ) or base (β_B), as compared to those generated by varying the olefin ($\alpha_{\text{nu}}^{\text{}}$) or the carbon acid (α_{CH}), respectively. These disparities are commonly referred to as imbalances ¹³²; the differences $I = \alpha_{\text{nu}}^a - \beta_{\text{nuc}}^a$ or $I = \alpha_{\text{CH}} - \beta_B$ can be regarded as a semiquantitative measure of these imbalances. Tables XIX and XX summarize imbalances for nucleophilic addition and for proton transfers, respectively. There exists a clear parallel between the data in Table XVIII and Tables XIX and XX: (a) large imbalances are associated with low k_0 values; (b) strong dependence of the imbalances on XY are reflected in strong dependence of k_0 on XY (proton transfers), weak dependence of the imbalances on XY goes parallel with weak dependence of k_0 on XY (nucleophilic additions).

Table XVIII. Intrinsic Rate Constants (log k_0) for Nucleophilic Addition to Activated Olefins and for Proton Transfers in 50% Me₂SO-50% Water at 20 $^{\circ}$ C.

	$PhCH=CXY + R_2NH$	$PhCH=CXY + OH^-$	$CH2XY + R2NH$
CN CN	4.94^{a}	$=-0.20^8$	$\approx 7.0^h$
COO _{CH₃} ∞	4.10 ^b `CH ₃		3.9 ⁱ
CN $C_6H_4 - 4-NO_2$	3.35°		3.95^{j}
œ		$=-2.05^8$	3.13 ^k
CN	2.65° $C_6H_3-2,4-(NO_2)_2$		2.90^j
COCH ₃ C OCH ₃	$0.30^{\rm d}$		2.75^{1}
н 'NO ₂	2.55^e	-4.03^8	0.73^{m}
C_6H_5 NO ₂	1.42		-0.25^{m}

aRef. 39. bRef. 50. ^cRef. 38. dRef. 82. eRef. 46. fRef. 88. 8Ref. 15. h_{In} water: F. Hibbert, Compr. Chem. Kinet. 8, 97 (1977). ⁱC. F. Bernasconi and N. Oliphant, unpublished results. ^jRef. 71. ^kRef. 134. 1 Ref. 133. mRef. 25.

Figure 9. Plot of log k_0 for piperidine/morpholine addition to PhCH=CXY vs. log k_0 for deprotonation of CH₂XY by piperidine/morpholine in 50% Me $_{2}$ SO-50% water.

Table XIX. α_{nuc}^n , β_{nuc}^n and Imbalances for Nucleophilic Additions to Olefins in Water and in 50% Me₂SO-50% Water.

olefin	nucleophile	solvent	$\alpha_{\text{nuc}}^{\qquad n}$	β_{nuc}^n	$I = \alpha_{nuc}^n - \beta_{nuc}^n$
$ArCH=C(CN)$ ₂ ^b	R_2 NH	water	0.55	0.35	0.20
$ArCH=C(CN)2b$	R_2NH	50% Me ₂ SO	0.56	0.42	0.14
ArCH=C(COO) ₂ C(CH ₃) ₂ ^C	R_2NH	water	0.24	0.08	0.17
ArCH-C(COO) ₂ C(CH ₃) ₂ ^C	R_2 NH	50% Me ₂ SO	0.25	0.15	0.10
ArCH=CHNO ₂ ^d	R_2 NH	water	0.51	0.25	0.26
PhCH= $C(Ar)NO2e$	R_2NH	50% Me ₂ SO	0.67	0.37	0.30
PhCH=C(Ar)NO ₂ ^f	RS	50% Me ₂ SO	0.87	0.19	0.68

 $a_{\alpha_{\text{nuc}}}$ ⁿ for amine addition has been corrected for the effect of the positive charge on the amine nitrogen, see Ref. 46. bRef. 43. cRef. 50. dRef 46. eRef. 88. fRef. 97.

C-H acid	base	α_{CH}	$\beta_{\rm B}$	$I = \alpha_{CH} - \beta_{B}$	
$ArCH2CH(CN)2a$	RCOO ⁻	0.98	≈ 1.0	⊶0	
ArCH ₂ CH(COMe)COOEt ^a	RCOOT	0.76	0.44	0.32	
ArCH ₂ C ₆ H ₃ -2,4-(NO ₂) ₂ b,c	R_2NH	0.87	0.45	0.42	
$ArCH2NO2d$	R_2NH	1.29	0.55	0.74	

Table XX. α_{CH} , β_B and Imbalances for Proton Transfers in Water.

^aR. B. Bell and S. Grainger, J. Chem. Soc., Perkin Trans. 2, 1367 (1976). ^bF. Terrier, J. Lelièvre, A.-P. Chatrousse, and P. G. Farrell, J. Chem. Soc., Perkin Trans. 2, 1479 (1985). ^CIn 50% Me₂SO-50% water. d Ref. 26.

As described in considerably more detail elsewhere, $129,131$ the effect of the lag in the resonance development on the intrinsic rate constants can be expressed by an equation of the form

$$
\delta \log k_0^{\text{res}}(C^-) = (\alpha_{\text{res}}^{C^-} - \beta) \delta \log K_1^{\text{res}}(C^-) \tag{39}
$$

 δ log k_ores(C⁻) is the difference between log k_o for the formation of the resonance stabilized carbanion and log k_o for the formation of a (hypothetical) reference carbanion which is not subject to any resonance effects. Slog $K_1^{reg}(C^-)$ refers to the increase in the equilibrium constant brought about by the resonance stabilization of the carbanion relative to our reference ion which is not stabilized by resonance. β is the Brønsted coefficient, i.e., $\beta_{\rm nuc}$ ⁿ for nucleophilic addition, $\beta_{\rm B}$ for proton transfers, and is taken as an approximate measure of bond formation or charge transfer from the nucleophile or base to the substrate. $\alpha_{\text{res}}^{\text{C}-1}$ is a parameter between 0 and 1 that measures the progress in resonance development at the transition state. If resonance development lags behind bond formation we have $\alpha_{\text{rec}}^{C-} - \beta < 0$. Since resonance stabilization implies $\delta \log K_1^{\text{res}} > 0$ the result is $\delta \log$ $k_0^{res}(C^-)$ < 0. For a given $\alpha_{res}^{C^-}$ - β , δ log $k_0^{res}(C^-)$ becomes progressively more negative with increasing δ log $K_0^{reg}(C^-)$, i.e., log k_0 decreases with increasing resonance stabilization of the carbanion.

It should be noted that α_{res}^{C-} is not to be confused with α_{ave}^{C} or α_{CH} . In fact the inequalities α_{succ}^{C-} β_{nuc}^n (or $\alpha_{\text{CH}} > \beta_B$) correspond to $\alpha_{\text{res}}^{\text{C}^-} < \beta_{\text{nuc}}^{\text{n}}$ (or $\alpha_{\text{res}}^{\text{C}^-} < \beta_B$). The size of the experimental imbalance, I = $\alpha_{\text{nu}}^{\text{u}} - \beta_{\text{nu}}^{\text{u}}$ (or $\alpha_{\text{CH}} - \beta_{\text{B}}$) is a function of both $\alpha_{\text{res}}^{\text{C}^{-}} - \beta_{\text{nu}}^{\text{u}}$ (or $\alpha_{\text{res}}^{\text{C}^{-}} - \beta_{\text{B}}$) and δ log K_0^{res} (C-). For a given $\alpha_{res}^{C^-} - \beta_{nuc}^{n}$ (or $\alpha_{res}^{C^-} - \beta_B$), I is proportional to δ log $K_0^{res}(C^-)$, while for a given δ log $K_0^{res}(C^-)$ I is proportional to $|\alpha_{res}^{\text{ce}-} - \beta|$. Thus the large sensitivity of log k₀ and of I to XY in proton transfers may be attributed to a combination of large differences in δ log K_n^{res}(C⁻) and a large $|\alpha_{\text{me}}^{\text{th}} - \beta|$. In nucleophilic addition the δ log K_o^{res}(C⁻) values for a given XY should be very similar to δ log K_o^{res}(C⁻) in proton transfers, and hence the lower sensitivity of log k_n, and I to XY in nucleophilic additions must be due to a smaller $|\alpha_{\text{res}}^{\text{c}} - \beta|$. A likely contributing reason for the smaller $|\alpha_{\text{res}}^{\text{C}-} - \beta|$ is the fact that in the olefin the procarbanionic carbon is already $sp²$ -hybridized which should facilitate π -delocalization of the developing negative charge into XY at the transition

state more than in proton transfers where the carbon is $sp³$ -hybridized. Other possible reasons have been discussed elsewhere.¹⁷

The strong negative deviation of the point for benzylideneacetylacetone in Fig. 9 can, at least in part, be understood as another manifestation of the PNS. In this case intramolecular hydrogen bonding (36, Section 3.6) is the product stabilizing factor whose development at the transition state lags behind bond formation and which depresses k, compared to systems that don't form strong intramolecular hydrogen bonds. The negative deviation can be expressed by

$$
\delta \log k_{\rm n}^{\rm Hb} = (\alpha_{\rm Hb} - \beta_{\rm nuc}^{\rm n}) \delta \log K_{\rm t}^{\rm Hb} \tag{40}
$$

in which δ log k_0 ^{Hb} is the difference between log k_0 for benzylideneacetylacetone and log k_0 for a hypothetical benzylideneacetylacetone in which T_A^{\pm} has no intramolecular hydrogen bond, δ log K₁Hb (> 0) is the increased equilibrium constant due to the hydrogen bond and α_{FB} is the progress in the development of the hydrogen bond at the transition state $(\alpha_{Hb} - \beta_{nuc}^n < 0)$.

The solvent effects on the intrinsic rate constants of carbanion-forming reactions can also be understood in the context of the PNS.^{129,131} In Section 3.3 we commented on the increase in k_0 for the reaction of amines with benzylidene Meldrum's acid upon transfer from water to acetonitrile or to chloroform. Similarly k_o for amine addition to β -nitrostyrene increases when Me₂SO is added to the aqueous solvent (Section 3.7).

Just as is the case with resonance, solvation of the carbanion lags behind bond formation at the transition state, 131 and hence reduces k_n . This reduction is stronger in the more solvating medium which is water in the case of nitronate or enolate type carbanions. This explains why $k₀$ is higher in the nonhydroxylic solvents acetonitrile and chloroform, or in the less aqueous Me₂SO-water mixtures. Extensive studies of the solvent dependence of k_0 in proton transfers, particularly in Me₂SO-water mixtures, $25,116,133-136$ show the same phenomenon. There is a direct relationship between the solvent effect on k_0 and the change in the solvational stabilization of the carbanion¹³⁶ induced by the change in solvent. Thus k_0 increases strongly with increasing Me₂SO content when the carbanion formed is a nitronate or enolate ion.^{25,133,134} However, in systems where the carbanion is *more* stable in Me₂SO-rich solvents, as is the case for highly dispersed ions such as the fluorenyl ions (75)¹¹⁶ or the ion derived from (α -cyanodiphenyl-methane) bis(tricarbonylchromium(0)) (76),¹³⁶ k_o is either insensitive to the solvent or decreases upon increasing the Me₂SO content, again a consequence of the PNS.

In Section 4.2, it was suggested that the higher intrinsic rate constant for thiolate ion addition to α nitrostilbene (eq 26) compared with amine addition to the same substrate may be a consequence of the soft acid-

soft base interactions which develop ahead of bond formation at the transition state. Since these soft acid-soft base interactions stabilize the adduct, the enhanced intrinsic rate constant may be understood as the manifestation of the PNS where a product stabilizing factor develops early along the reaction coordinate. This would be a particularly interesting example of the operation of the PNS because it would constitute the first case where a product stabilizing factor develops *ahead* of bond formation; in the other cases discussed in this report the product stabilizing factor (resonance, solvation, intramolecular hydrogen bonding) always lags behind bond formation.

How can we understand these contrasting patterns? A common characteristic of the latter product stabilizing factors is that they are "created' by the reaction, i.e., they would not exist in the absence of bond formation that leads to a resonance stabilized carbanion. In other words, at best these factors could conceivably develop synchronously with bond formation, but not possibly ahead of it. In reality their development lags behind bond formation; the reason for these lags which are somewhat different for each factor have been discussed elsewhere.¹³⁷ In contrast, soft-soft interactions are rooted in the polarizability of the interacting molecules and may not require a substantially developed bond for them to exist. It is therefore not unreasonable that they could develop faster than bond formation.

6.2. *Nucleophilicity and Nucleofiqality*

Table XXI shows rate constants for the addition of Ritchie-type nucleophiles to 9- (dinitromethylene)fluorene (53). As pointed out in Section 5.1 these rate constants afford a linear relationship with Ritchie's¹⁰⁸ N+ parameter although the slope of the correlation is somewhat greater than unity. According to

nucleophile (solvent)	k_1 , M ⁻¹ s ⁻¹	N_t^b	
CH ₃ OH	1.8×10^{-4} ^a	1.18	
$CN^{-}(H2O)$	0.27	3.67	
CN^{-} (25% sulfolane-H ₂ O)	71	5.65	
CN^{-} (CH ₃ OH)	3.18×10^{2}	5.94	
$CH3O-$ (CH ₃ OH)	4.26×10^{2}	6.25	
CN^{-} (Me ₂ SO)	3.78×10^{5}	8.6	
$CN^{-}(DMF)$	4.25×10^{6}	9.33	
N_3 ⁻ (Me ₂ SO)	1.06×10^{7}	10.07	

Table XXI. Rate Constants for Addition of Nucleophiles to 9-(Dinitromethylene)fluorene at 25°C.^a

aFrom Ref. 107b. bRitchie's N, parameter, ref. 108. CUnits of s⁻¹.

Hoz^{107b,109} the good correlation with the Ritchie parameter for anion-cation combinations, but the absence of such a correlation with the Swain-Scott n parameter 138 for S_N2 reactions is not surprising. It has been related to the notion that nucleophilic reactions are governed by the interaction of the highest occupied molecular orbital (HOMO) of the nucleophile with the lowest unoccupied molecular orbital (LUMO) of the electrophile.¹³⁹

Electrophiles such as cations, carbonyl compounds and electron deficient aromatic compounds that obey the Ritchie equation have relatively low lying LUMO's, usually π^* , a feature shared by activated olefins.¹⁰⁹ This contrasts with typical S_N2 substrates which have LUMO's (σ^*) of high energy.¹⁰⁹

The kinetic parameters in Tables II-IX and XI-XVII also contain much information about nucleophilicities. Since they refer to measurably reversible systems, *equilibrium* constants for nucleophilic addition as well as rates of leaving group depamue (nucleofugalities) are equally available for these systems. A number of selected data are summarized in Tables XXII (k_1 and K_1 for addition) and XXIII (k_{-1} for departure). Since nucleophilic addition to an olefin has many features in common with addition to an aromatic carbon, corresponding data for the reactions of 1,3,5-trinitrobenxene (TNB) have been included in Tables XXII and XXlII.

Regarding nucleophilic addition we note that the *relative* nucleophilic reactivities (numbers in parentheses, Table XXII) are not strongly dependent on the olefinic substrate. For example, $k_1^{Pip}/k_1^{OH} = 2.10 \times 10^2$, 3.62 \times 10^2 , 5.40 \times 10², 5.32 \times 10² for benzylidenemalononitrile, benzylidene Meldrum's acid, β -nitrostyrene and α nitrostilbene, respectively. An exception is k_1 ^{H2O}/ k_1 ^{OH} for benzylidene Meldrum's acid (7.39 × 10⁻⁴) which is >lOO fold huger than for the other substrates. The likely reason for the relatively high rate of water addition which was also noted with benzylidene-1,3-indandione¹⁵ is a transition state stabilization by intramolecular hydrogen bonding (77).

The rank in nucleophilicity of the various bases towards olefins is the same as towards 1,3,5 lrinitrobenxene (TNR). However, compared to the other nucleophiles, hydroxide ion appears to be more reactive with TNB than with the olefins, e.g., $k_1^{\text{Pip}}/k_1^{\text{OH}} = 80$ for TNB vs. 2.10×10^2 to 5.40×10^2 for the olefins, or $k_1^{RS}/k_1^{OH} = 77.3$ (RS⁻ = glutathione anion) for TNB vs. $k_1^{RS}/k_1^{OH} = 1.30 \times 10^5$ (RS⁻ = CH₃OCOCH₂S⁻ which has a similar pK_a as glutathione) for α -nitrostilbene. The change in solvent (50% Me₂SO-50% water for olefins, water for TNB) cannot account for these differences since OH⁻ is more reactive in 50% Me₇SO-50% water.

Another interesting comparison is with nucleophilic vinylic substitution reactions in which the addition step is rate limiting, e.g., with substrates such as $79-81$. Rappoport¹⁴⁰ has recently

$$
\begin{array}{cccc}\n\text{PhC(Cl)} = \text{C(NO}_2)\text{Ph} & \text{CICH} = \text{C(CN)Ph} & \text{CICH} = \text{CHSO}_2\text{Tol} \\
\text{79} & 80 & 81\n\end{array}
$$

reviewed nucleophilic reactivity in these reactions. Even though relative nucleophilicities were found to depend on the substrate, a qualitative nucleophilicity order was given which is reproduced in Table XXIV. This scale is

Nucleophilic addition to olefins

leaving group	$PhCH=C(CN)_{2}$ (pK_q)			PhCH=C(COO) ₂ C(CH ₃) ₂ ^d			PhCH=CHNO ₂		PhCH=C(NO ₂)Ph		$C_6H_3-1,3,5-(NO_2)_3$	
$n-BuNH2$	(10.65)				1.64×10^{-2} (4.40×10^{3})	1.25	(3.21×10^5)				1.50×10^5 (1.53×10^4)	
piperidine	(11.02)		1.36×10^4 (3.16 $\times 10^7$)		1.30×10^{-2} (3.49×10 ³)	36	(9.33×10^{6})	2,60	(6.86×10^7)		2.10×10^6 (2.14×10^5)	
morpholine	(8.72)	2.60×10^5	(6.05×10^8)	1.98	(5.31×10^5)	1.0×10^3	(2.57×10^{8})	52	(1.37×10^{9})			
aniline	(4.25)					3.8×10^{6}	(9.25×10^{11})			$>10^{7}$		
OHT	(17.34)	4.3×10^{-4}	(1.00)	3.73×10^{-6}	$(1.00)^{\rm f}$	3.89×10^{-6}	(1.00)	3.79×10^{-8} ^I (1.00)		9.8	(1.00)	
$OH^{-}(H^{+})^{c}$	(-1.44)	3.5×10^{6}	(8.14×10^{9})	1.47×10^5	(3.94×10^{10})	5.12×10^4	(1.32×10^{10})		1.25×10^{3} (3.30×10 ¹⁰)			
$PhO^ g$	(9.9)			3.3	(8.85×10^{6})							
EtS ⁻	(11.26)								3.49×10 ⁻³ (9.21×10 ⁴) 1.02×10^2 (10.4) ^h			
CH ₃ OCOCH ₂ S	(8.83)								1.37×10^{-1} (3.61×10 ⁶)			
$CH(CN)_{2}$	(11.39)	6.52	(1.52×10^4)									

Table XXIII. Rate Constants for Leaving Group Departure (k_{-1}, s^{-1}) from Olefin Adducts in 50% Me₂SO-50% Water at 20°C,^{a,b} and from 1,3,5-Trinitrobenzene Adducts in Water at 25°C.^{b,c}

^aData from corrresponding tables in this report. ^bNumbers in parentheses are relative rate constants with k_{rel} for OH⁻-departure being 1.00. ^cF. Terrier, Chem. Rev. 82, 77 (1982). d_{In water. ^eH⁺-catalyzed OH⁻-departure, corresponding to **k_₁H** in eq 5 or Scheme 1. ^fC. F. Bernasconi and J. Fassberg, unpublished results. 8 Ref. 27. ^hGlutathione anion.}

represented by two sequences. The main one (in boldface) is a single reactivity scale whereas short series are introduced above the main sequence in the appropriate places. We note that $E(S^- >$ piperidine $>$ morpholine $>$ PhO⁻ > OH⁻ >> H₂O extracted from Table XXII for nucleophilic addition to olefins fits very well with that for the vinylic substitutions except for the rank of OH- in the olefm reactions which is lower than with vinylic substrates.

^aFrom ref. 140 (after corrections supplied by Z. Rappoport).

The relative nucleofugalities are also quite independent of the olefin (Table XXIII) with the exception of amine departure from the amine adducts of benzylidene Meldrum's acid (e.g., k₋₁^{Pip}/k₋₁^{OH} = 3.49 × 10³ compared to 9.33 \times 10⁶ to 6.86 \times 10⁷ for the other olefins). Part of the discrepancy may be attributed to the fact that in water (benzylidene Meldrum's acid) k_{-1}^{Pip} is reduced and k_{-1}^{OH} enhanced compared to 50% Me₂SO-50% water. For example, k_{-1} ^{Pip} for benzylidene Meldrum's acid is 7.0 fold lower in water than in 50% Me₂SO⁵⁰ while k_{-1} ^{OH} may be estimated to be ~10 to 30 fold higher. These two effects could therefore account for a factor of 70 to 210 in the reduced $k_{-1}P^{ip}/k_{-1}$ ^{OH} ratio for benzylidene Meldrum's acid. Intramolecular hydrogen bonding stabilization of the amine adduct (78) which reduces $k_1^{P\psi}$ probably accounts for the balance of the reduction in k_{-1}^{Pip}/k_{-1}^{OH} .

Comparison of the relative nucleofugalities from the olefin adducts with those from the TNB adducts show a similar pattern as the comparison of the nucleophilicities: the ranks are the same but there are some quantitative differences. The most pronounced difference is that for thiolate ion departure: it is faster than OH⁻-departure but several orders of magnitude more so for α -nitrostilbene than for TNB.

It would be interesting to compare nucleofugalities in the systems discussed in this report with the nucleofugality scales of Stirling¹⁴¹ for the leaving group departure step in ElcB eliminations. Unfortunately there is hardly any overlap between the leaving groups studied by Stirling and the ones investigated in reversible nucleophilic additions to activated olefins. Future work in our laboratory will be directed towards filling this gap.

Acknowledgements. This work has been supported by Grant No. CHB-8617370 from the National **Science Foundation.**

References and Notes

- 1. **Z. Rappoport and** D. Ladkani, Chem. Scripta 5,124 (1974).
- 2. S. Patai and Z. Rappoport, in The Chemistry of the Alkenes(ed. S. Patai) Chapter 8, p. 469, Wiley-Jnterscience, New York (1964).
- 3. Z. Rappoport, *Adv. Phys. Org. Chem.* 7, 1 (1969).
- 4. G. Modena, *Act. Chem. Res.* 4,73 (1971).
- 5. **Z.** Rappoport, *Reck Trav. Chim. Pays-Bas* **104,309** (1985).
- 6. B. A. Shainyan, Usp. *Khim 55,942* (1986); Engl. *Russ. Chem. Rev. 55,511* (1986).
- 7. W. H. Saunders, Jr. and A. F. Cockerill, *Mechanisms of Elimination Reactions,* Wiley-Jnterscience, New York (1973).
- 8. (a) R. A. More O'Ferrall, in *The Chemistry of the Carbon-Halogen Bond,* Part 2 (ed. S. Patai) Chapter 9, Wiley-Jnterscience, New York (1973); (b) J. R. Gandler, ibid., Supplement A2, in press.
- 9. F. G. Bordwell, *Act. Chem. Res. 5,* 374 (1972).
- 10. The k_p values discussed in this report were typically determined by interpolation or extrapolation of Brønsted type plots of log k vs. log K, with the pK, of the nucleophile or base being the variable parameter. For proton transfers statistical corrections¹¹ were usually applied.
- 11. R. P. Bell, *The Proton in Chemistry,* 2nd edition, Cornell University Press (1973), p 189.
- 12. For a review of the literature up to 1970, see C. A. Fyfe, in *The Chemistry of the Hydroxyl Group(ed. S.* Patai), Chapter *2,* p 51, Wiley-Interscience, New York (1971).
- 13. C. F. Bemasconi, K. A. Howard and A. Kanavarioti, J. *Am. Chem. Sot.* **106,6827** (1984).
- 14. C. F. Bemasconi, J. P. Fox, A. Kanavarioti, and M. Panda, *J. Am. Chem. Sot.* **108,2372** (1986).
- 15. C. F. Bemasconi, A. Laibelman, and J. L. Zitomer, J. *Am. Chem. Sot.* **107,6563** (1985).
- 16. C. F. Bernasconi, D. J. Carré, and A. Kanavarioti, J. Am. Chem. Soc. 103, 4850 (1981).
- 17. C. F. Bernasconi and P. Paschalis, J. Am. Chem. Soc., submitted for publication.
- 18. C. F. Bemasconi and G. D. Leonarduzxi, J. Am. *Chem. Sot.* **102, 1361** (1980).
- 19. C. F. Bernasconi and M. W. Stronach, J. Org. Chem. 51, 2144 (1986).
- 20. The conversion of T_{OH}^- to T_{OH}^0 is the rate limiting step in the formation of products.¹⁶
- 2 1, **S.** Patai and **Z. Rappoport, J.** *Chem. Sot.* 383,392 (1962).
- 22. C. F. Bernasconi, A. Kanavarioti, and R. B. Killion, Jr. J. Am. Chem. Soc. 107, 3612 (1985).
- 22a. K. Fish, D. L. Appanna, S. 0. Fadoju, Abstracts, Iv. Conference on Correlation Analysis in Organic Chemistry, Poxnan, Poland, 1988; p 14.
- 23. R. B. Pritchard, C. E. Lough, J. B. Reesor, H. L. Holmes, and D. J. Currie, *Can. J. Chem. 45, 775* **(1967).**
- 24. T. K. Crowell and T.-R. Kim, *J. Am. Chem. Soc.* 95, 6781 (1973).
- 25. C. F. Bernasconi, D. A. V. Kliner, A. S. Mullin, and J. X. Ni, J. Org Chem. 53, 3342 (1988).
- 26. F. G. Bordwell and W. J. Boyle, Jr. J. Am. Chem. Soc. 94, 3907 (1972).
- 27. C. F. Bernasconi and G. D. Leonarduzzi, J. Am. Chem. Soc. 104, 5133 (1982).
- 28. (a) F. J. Kunz, P. Margaretha, and O. E. Polansky, Chimia 24, 165 (1970); (b) P. Schuster, O. E. Polansky, and F. Wessely, *Tetrahedron* 22, *Suppl.* 8, *Pan II,* 463 (1966).
- 29. **P. Margaretha,** *Mh. Chem.* **101,811** (1970).
- 30. **P. Margaretha, P. Schuster, and 0. E. Polanslq,** *Tetrahedron* **27,71(1971).**
- 31. C. F. Bernasconi and G. D. Leonarduzzi, J. Am. Chem. Soc. 104, 5143 (1982).
- 32. M. Eigen, G. Ilgenfritz, and W. Kruse, Chem. Ber. 98, 1623 (1965).
- 33. M. Eigen, *Angew. Gem. Int. Ed. Engl. 3,* 1 (1964).
- *34.* **W.** P. Jencks, *Act. Chem. Res.* 9,475 (1976); Chem. Sot. *Rev.* **10, 345** (1981).
- 35. (a) C. Reichhardt and K.-Y. Yun, *Tetrahedron Len. 31,3163 (1982);* (b) C. Reichhardt, K.-Y. Yun, W. Massa, and R. E. Schmidt, Liebigs *Ann. Chem.* 1987 (1985).
- *36.* (a) R. Hiittel, Chem. Ber. 74, 1825 (1941); (b) A. A. Bothncr-By and R. K. Harris, J. Org. Chem. 30, 254 (1965); (c) R. Dersch and C. Reichhardt, Synthesis, 940 (1980).
- 37. M. Inoue and T. C. Bruice, J. Am. Chem. Soc. 104, 1644 (1982).
- 38. C. F. Bernasconi, C. J. Murray, J. P. Fox, and D. J. Carré, *J. Am. Chem. Soc.* **105**, 4349 (1983).
- 39. C. F. Bemasconi, J. P. Fox, and S. Fomarini, J. Am. Chem. Sot. 102,281O (1980).
- 40. C. F. Bemasconi and D. **J. Can6, J. Am. Chem. Sot. 101,2698** (1979).
- 41. Intramolecular proton switch seems to be the preferred pathway in heptane, e.g., in the reaction of piperidine with chalcone 42
- 42. S. Kinastowski and J. Grabarkiewicz-Szczesna, *Bull. Acad.* Polon. *Sci.* 28, 1 (1979).
- 43. C. F. Bemasconi and R. B. Killion, Jr., *J. Org. Gem.* submitted for publication.
- 44. H. C. Brown and Y. Okamoto, *J. Am. Chem. Sot. MI,4979* (1958).
- 45. A. J. Hoefnagel and B. M. Webster, *J. Am. Chem. Sot. 95,5357* (1973).
- 46. C. F. Bemasconi, R. A. Renfrow, and P. R. Tia, *J. Am. Chem. Sot.* **lOt3,** 4541 (1986).
- 47. C. F. Bemasconi and C. J. Murray, *J. Am. Chem. Sot.* **106,3257** (1984).
- 48. C. F. Bemasconi and S. Fomarini, *J.* Am. Chem. Sot. 102,5329 (1980).
- 49. C. F. Bemasconi and C. J. Murray, *J. Am. Chem. Sot.* **loS,** 5251 (1986).
- 50. C. F. Bemasconi and M. Panda, *J. Org. Chem.* 52,3042 (1987).
- 5 1. B. Sehreiber, H. Martin& P. Wolschann, and P. Schuster, *J. Am. Chem. Sot.* **101,4708 (1979).**
- 52. For reviews, see (a) N. J. Fina and J. O. Edwards, *Int. J. Kin.* 5, 1 (1973); (b) S. Hoz and E. Buncel, *Isr. J. Chem.* 26, 313 (1985).
- 53. S. Hoz, *J. Org. Chem.* 47,3545 (1982).
- 54. J. E. Dixon and T. C. Bmice, *J. Am. Chem. Sot.* 93,3248,6592 (1971).
- 55. E. E. Sander and W. P. Jencks, *J. Am. Chem. Sot. 90,* 6154 (1968).
- 56. R. F. Hudson, D. P. Hansell, S. Wolfe, and D. Mitchell, *J. Chem. Sot., Chem. Comm.,* 1406 (1985).
- 57. D. J. Palling and W. P. Jencks, *J. Am. Chem. Sot.* **106,4869 (1984).**
- 58. See pK_a of CH₂ XY and pK_t ^{H₂O} for PHCH=CXY in Table I.
- 59. E. M. Amett, S. G. Maroklo, S. L. Schi.lling, and J. A. Harrelson, *J. Am. Chem. Sot.* **106,6759** (1984).
- 60. (a) X. Wang and K. N. Houk, *J. Am. Chem. Sot.* **110, 1870 (1988); (b) K. B. Wiberg and K. E. Landig,** *Ibid.,* **110, 1872 (1988).**
- 61. (a) G. S. Hammond, J. *Am. Chem. Sot. 77, 334* (1955); (b) J. E. Leftler, Science(Washington, D.C.) 117, 340 (1953); (c) 3. E. Leffler and E. Gmnwald, *Rates und Equilibria of Organic Reactions,* Wiley-Interscience, New Yor, p 156 (1963).
- 62. (a) C. D. Johnson, *Chem. Rev.* 75,755 (1975); (b) P. R. Young and W. P. Jencks, J. *Am. Chem. Sot.* 101,3288 (1979); (c) E. M. Amett and R. Reich, *Ibid.* 102,5892 (1980); (d) F. G. Bordwell and D. H. Hughes, J. Org. *Chem. 45,3314* (1980); 47,3224 (1982).
- 63. (a) A. Press, Adv. Phys. Org. Chem. 16, 69 (1977); (b) Reactivity-Selectivity issue of Isr. J. Chem. 26, #4(1985).
- 64. C. F. Bemasconi and C. J. Murray, J. *Am. Chem. Sot.* 108,5257 (1986).
- 65. T_A^+ only becomes significant if T_A^- derived from strongly basic amines is generated in an independent experiment and then mixed with strong acid in a pH-jump experiment. Under these conditions T_A^- partitions into BMA (k_{-1}) and benzaldehyde via $T_A^{+,49}$
- 66. R. A. More O'Ferrall, J. Chem. Soc. B, 274 (1970).
- 67. W. P. Jencks, *Gem. Rev.* 72, 705 (1972).
- 68. C. F. Bemasconi, D. E. Fairchild and C. J. Murray, J. *Am. Chem. Sot.* 109,3409 (1987).
- 69. As mentioned in Section 2.2, such intramolecular 1,3-proton transfer between oxygen and carbon was reported for the conversion of T_{OH}^- to T_O^- (Scheme II) in the hydrolysis of benzylidenemalononitrile.¹⁴
- 70. M.-L. Abrens and G. Maass, *Angew. Chem. ht.* Ed. *Engl. 7,* 818 (1968).
- 71. C. F. Bemasconi and S. A. Hibdon, J. *Am. Chem. Sot.* 105,4343 (1983).
- 72. H. K. Hall, J. *Org. Chem. 29,3539* (1964).
- 73. S. T. McDowell and C. J. M. Stirling, *J. Chem. Soc. B* 343 (1967).
- 74. W. P. Jencks and M. Gilchrist, *J. Am. Chem. Sot. 90,2672* (1968).
- 75. C. F. Bemasconi, *MTP ht. Rev. Sci., Org. Chem. Ser. One* 3,33 (1973).
- 76. E. Buncel, M. R. Crampton, M. J. Strauss, and F. Terrier, *Electron Deficient Aromatic- and Heteroaromatic-Base Interactions, Elsevier, Amsterdam (1984).*
- *77.* F. Terrier, Chem. *Rev. 82,78* (1982).
- 78. C. D. Ritchie, Can. *J. Gem. 64,2239 (1986).*
- *79.* (a) E. Gmnwald, *J. Phys. Chem.* 71, 1864 (1967); (b) E. Grunwald and E. K. Ralph, III, *J. Am. Chem. Sot. 89, 4405* (1967).
- 80. M. Cocivera, *J. Phys. Chem.* 72, 2520 (1968).
- 8 1. C. F. Bemasconi and D. J. Car&, *J. Am. Chem. Sot.* 101,2707 (1979).
- 82. C.F. Bemasconiand A.Kanavarioti, *J.Am.Chem.Soc. 108,7744* (1986).
- 83. C. F. Bemasconi and R. D. Bunnell, *J. Org. Chem. 53,200l* (1988).
- *84. M. Calmon and* **J.-P. C&non, C.** *R. Acud. Sci. furis* 276C, 197 (1973).
- 85. C. F. Bernasconi, D. J. Carré, and J. P. Fox, in *Techniques and Applications of Fast Reactions in Solution* (eds. W. J. Gettins, E. Wyn-Jones), Reidel, Dordrecht, Holland, p 435 (1979).
- 86. It should be mentioned that Gross and Hoz^{87} have suggested a different interpretation for the positive deviation of the z-donor substituents, one that is based on assuming radicaloid character of the transition state. This interpretation will be discussed in Section 5.2.
- 87. Z. Gross and S. Hoz, 1. *Am. Chem. Sot.* 110,7489 (1988).
- 88. C. F. Bernasconi and R. A. Renfrow, J. Org. Chem. 52, 3035 (1987).
- 89. A. J. Kirby and C. J. Logan, J. Chem. Soc., Perkin. Trans. 2, 642 (1978).
- 90. (a) D. V. Santi and C. S. McHenry, *Proc. Nutl. Acud. Sci. USA* 69, 1855 (1972); (b) P. V. Danenberg, R. J. Langencach, and C. Heidelberger, *Biochemistyy* 13,926 (1974); (c) R L. Bellisario, G. F. Maley, J. H. Galivan, and F. Maley, *Proc. Natl. Acad. Sci. USA* **73**, 1848 (1976); (d) G. F. Maley, R. L. Bellisario, D. U. Guario, and F. Maley, J. *Biol. Chem 254, 1288,* 1297, 1301 (1979).
- 91. (a) Y. Wataya, A. Matsuda, and D. V. Santi, *J. Mol. Biol. 255, 5538* (1980); (b) L Maggiora, C. T.-C. Chang, P. F. Torrence, and M. P. Mertes, J. Am. Chem. Soc. 103, 3192 (1981).
- 92. (a) R. I. Kalman, *Biochemistry* lo,2567 (1971); (b) Y. Wataya, H. Hayatsu, and Y. Kawazoe, J. Am. *Chem. Sot. 94, 8927* (1972); (c) Y. Wataya, K. Negishi, and K. Hayatsu, *Biochemistry 12, 3992* (1973); (d) B. C. Pal, J. *Am. Chem. Sot.* 100, 5170 (1978); (e) T. Chikuma, K. Negishi and H. Hagatsu, Chem. Pharm. Bull. Jpn. 26, 1746 (1978); (f) U. Wataya, H. Hayatsu, and Y. Kawazoe, J. *Biochem. 73, 871* (1973).
- 93. S. Buckwell, M. I. Page, and J. L. Longridge, J. Chem. Sot., *Chem. Commun.* 1039 (1986).
- 94. (a) C. E. Lough, D. Currie, and H. L. Holmes, *Can. J. Chem.* 46, 771 (1968); (b) R. B. Pritchard, C. E. Lough, D. J. Currie, and H. L. Holmes, Ibid. 46, 775 (1968).
- 95. M. Friedman, J. F. Cavins, and J. S. Wall. J. *Am. Chem. Sot. 87.3672* (1965).
- 96. M. Rosenberg, S. Balaz, E. Sturdik, and A. Kucher, *Collect. Czech. Chem. Commun.* 52,425 (1987).
- 97. C. F. Bemasconi and R. B. Killion, Jr., J. *Am. Chem. Sot.* 110,7506 (1988).
- 98. E. G. Sander and W. P. Jencks, *J. Am. Chem. Soc.* **90**, 6154 (1968).
- 99. (a) J. Hine and R. D. Weimar, Jr. J. *Am. Chem. Sot.* 87,3387 (1965); (b) J. Hine, *Structural Effects on Equilibria in Organic Chemistry,* Wiley-Interscience, New York, p 225 (1975).
- 100. (a) R. G. Pearson, Survey *Prog. Chem. 5,* 1 (1969); (b) R. G. Pearson and J. Songstad, J. *Am. Chem. Sot. 89, 1827* (1967).
- 101. P. DeMaria and A. Fini, J. Chem. Sot. *(B),* 2335 (1971).
- 102. C. F. Bemasconi, R. B. Killion, Jr., J. Fassberg, and Z. Rappoport, unpublished results.
- 103. J. C. Fishbein and W. P. Jencks, J. Am. Chem. Soc. 110, 5075, 5087 (1988).
- 104. R. S. Breslow, *Tetrahedron Lert. 399* (1964).
- 105. Footnote 32 in Ref. 103b.
- 106. D. R. Marshall, P. J. Thomas, and C. J. M. Stirling, J. Chem. Sot., *Perkin Trans. 2 1977,* 1914.
- 107. (a) S. Hoz and D. Speizman, *Tetrahedron Lett. 1775* (1978); (b) S. Hoz and D. Speizman, J. Org. Ckm. 48, 2904 (1983).
- 108. C. D. Ritchie, Act. Chem. *Res 5,348* (1972).
- 109. S. Hoz, In *Nucleophilicity (eds.* J. M. Harris and S. P. McManus), *Adv. Chem. Ser., American* Chemical Society, Washington, D.C. 215, 181 (1987).
- 110. S. S. Shaik, *Prog. Phys. Org. Chem.* 15, 197 (1985).
- 111. (a) A. Pross, *Adv. Phys. Org. Chem.* 15, 99 (1985); A. Pmss, Act. *Gem. Res.* 18, 212 (1985).
- 112. S. Fukuzumi and J. K. Kochi, *J. Am. Chem. Soc.* **103**, 7240 (1981).
- 113. R. G. Pearson and R. L. Dillon, J. Am. Chem. Soc. 75, 2439 (1953).
- 114. W. N. Olmstead and F. G. Bonlwell, *J. Org. Chem.* 45,3299 (1980).
- 115. In 10% Me₂SO-90% water.¹¹⁶
- 116. C. F. Bemasconi and F. Terrier, *J. Am. Gem. Sot.* 109,7115 (1987).
- 117. F. G. Bordwell, J. C. Branca, D. L. Hughes and W. N. Oltnstead, *J. Org. Chem.* 45,3305 (1980).
- 118. S. Hoz, Z. Gross and D. Cohen, *J. Org. Chem. 50,* 832 (1985).
- 119. S. Hoz and S. S. Perach, *J. Org. Chem.* 47,4056 (1982).
- 120. C. F. Bernasconi and D. F. Schuck, unpublished results.
- 121. X. Creary, *J. Org. Gem.* 45,280 (1980).
- 122. (a) K. B. Wiberg, G. M. Lampman, R. P. Ciula, D. S. Connor, P. Schertler, and J. Lavanish, *Tetrahedron* 21,2749 (1965); (b) J. K. Hall, B. P. Blsnchard, S. C. Cherkovsky, J. B. Sieja, and W. A. Sheppard, *J. Am. Chem. Sot.* 93, 110 (1971); (c) E. P. Blanchard and A. Cairncross, Ibid. 88, 487 (1966); (d) M. Pomeranz, R. N. Wilke, G. W. Gruber, and U. Roy, Ibid. 94,2752 (1972).
- 123. S. Hoz and D. Aurbach, *Terruhedron 35,881* (1979).
- 124. (a) C. F. Bemasconi, J. L. Zitomer, J. P. Fox, and K. A. Howard, *J. Org. Chem.* 49,482 (1984). (b) C. F. Bernasconi, A. Laibelman, and J. L. Zitomer, *J. Am. Chem. Soc.* 107, 6570 (1985); (c) C. F. Bemasconi and J. L. Zitomer, unpublished results.
- 125. (a) R. A. Marcus, *J.* Phys. Chem. 72, 891 (1968); (b) A. 0. Cohen and R. A. Marcus, Ibid. 72, 4249 (1968); (c) W. J. Albery, *Annu. Rev.* Phys. Chem. 31,227 (1980).
- 126. (a) H. F. Koch, *Act. Chem. Res.* 17, 137 (1984); H. F. Koch, in *Comprehensive* Curbunion Chemistry (eds. E. Buncel and T. Durst), Elsevier, Amsterdam, Part C, p 321(1987).
- 127. C. M. Evans and A. J. Kirby, *J. Chem. Sot., Perkin Trans.* 2, 1259 (1984).
- 128. H. H. Jaffe, Chem. *Rev.* 53, 191 (1953).
- 129. C. F. Bemasconi, *Act. Chem. Res.* 20,301 (1987).
- 130. C. F. Bemasconi, in Nucleophilicity (eds. J. M. Harris and S. P. McManus), Adv. Chem. Ser. 215, 115 (1987).
- 131. C. F. Bernasconi, *Tetrahedron* 41, 3219 (1985).
- 132. D. A. Jencks and W. P. Jencks, *J.* Am. *Chem. Sot. 99,7948* (1977).
- 133. C. F. Bernasconi and R. D. Bunnell, *Isr. J. Chem.* 26, 420 (1985).
- 134. C. F. Bernasconi and P. Paschalis, *J. Am. Chem. Soc.* 108, 2969 (1986).
- 135. C. F. Bemasconi and R. D. Bunnell, *J. Am. Chem. Sot.* 110,290O (1988).
- 136. C. F. Bernasconi, R. D. Bunnell, and F. Terrier, *J. Am. Chem. Soc.* 110, 6514 (1988).
- 137. Resonance: see ref. 129,131; solvation: see ref. 129,131; intramolecular hydrogen bonding: **see** ref. 82.
- 138. C. G. Swain and C. B. Scott, *J. Am. Chem. Soc.* 75, 141 (1953).
- 139. H. Fujimoto and K. Fukui, Jn "Chemical Reactivity and Reactions Paths"; G. Klopman, Ed., Wiley: New York, 1974; Chapter 3.
- 140. Z. Rappoport, Jn *Nucleophilicity (eds.* J. M. Hanis and S. P. McManus), *Adv. Chem. Ser.,* American Chemical Society, Washington, D.C. 215,399 (1987).
- 141. C. J. M. Stirling, *Act. Chem. Res. 12,* 198 (1979).